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Abstract

We model a boundedly rational agent who exhibits limited and heterogeneous at-

tention. The agents’ attention can be naturally sorted in an ascending order. We

provide a characterization result using two simple behavioral postulates. Unlike earlier

models, consideration sets’ composition and frequency are uniquely identified. Within

our framework, we accommodate unobserved heterogeneity in attention and unobserved

preferences. Furthermore, we explore various extensions of our model and provide in-

sights into the comparative statics of attentiveness levels in two probabilistic choices.

Finally, we apply our model to a problem of optimal list design where a designer can

intentionally manipulate the list.

Keywords: Revealed Preference, Attention, List, Self-Preferencing.

1 Introduction
This paper is based on two well-established observations on decision-making: (i) People

do not pay attention to all available alternatives (but rather consider a smaller subset of

feasible options), and (ii) people’s attention exhibits heterogeneity and often vary during the

decision-making process. Regarding (i), the marketing literature has long emphasized that

individuals often limit their attention to a small subset of all available alternatives when

making choices. This subset is commonly referred to as a consideration set and typically

comprises options that the decision maker (hereafter DM) perceives as feasible or relevant to

their objectives (Wright and Barbour, 1977). For example, when purchasing pain relievers,
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shampoo, or soft drinks, the median numbers of products people consider are three, four,

and five, respectively (Urban, 1975).

Regarding (ii), the formation of consideration sets is an inherently complex process that

depends on stimulus, memory, evaluation cost, cognitive ability, and other factors (Hauser

and Wernerfelt, 1990; Shapiro et al., 1997). Changes in internal conditions and external

environments frequently result in fluctuating levels of attentiveness and consideration sets.

As an illustrative example, consider an individual whose attention varies daily based on

the previous night’s sleep (Durmer and Dinges, 2005). Longer periods of sleep lead to

an improved capacity to effectively process and interact with new information that we

encounter as part of our daily experiences. Such unobserved heterogeneity of consideration

sets, combined with potentially unobserved preferences, presents a substantial challenge for

researchers in identifying both what the DM considers and how frequently a set of options

is considered.

In this paper, we study probabilistic choice resulting from both unobserved hetero-

geneity of consideration sets and possibly unobserved preferences. Our main contribution

is developing a framework where it is possible to uniquely identify both the contents and

frequencies of consideration sets. Such insights carry valuable implications for manage-

rial decisions, potentially leading to more efficient resource allocation, improved product

development, and more effective marketing strategies.

Our identification strategy is based on the fact that the more we sleep, the more we

pay attention. For example, researchers have shown that if we reduce sleep to 5 hours per

night over a week, people pay less attention compared to those allowed to sleep for 8 hours

each night (Dorrian et al., 2004). The person’s physical state, like tiredness, discomfort,

sickness, etc., also plays an important role in how much the person pays attention. Hence,

to facilitate these examples in our model, consideration sets satisfy the expansion property.

Formally, the collection of consideration sets can be ordered such that the consideration sets

of higher types (more attention) nest the consideration sets of lower types (less attention).1

The expansion of consideration sets property is descriptively appealing as individuals

often enrich their consideration sets over the decision-making process. On the one hand, the

DM can actively search for additional information to ensure a thorough evaluation of options

and make informed choices. For instance, in situations involving repeated choices, if previous

1Without any structure on the collection of consideration sets, the unobserved heterogeneity of considera-
tion sets poses a serious challenge to the identification problem. For example, consider the simplest scenario,
which is the standard random utility model (RUM). Under RUM, the decision maker evaluates all available
alternatives, effectively eliminating concerns about unobserved heterogeneity in consideration sets. However,
it is well-known that RUM is not uniquely identified. For identification of RUM, see Turansick (2022).
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selections fail to deliver desired outcomes, individuals may change their approach and seek

new information to enhance future outcomes. During the information-collecting process,

individuals may come across options that were previously unknown or neglected. The

discovery of these new alternatives enlarges the DM’s awareness, leading to the expansion of

their consideration sets. For example, in the sequential experimentation model of Fershtman

and Pavan (2023), the DMmakes choices in several periods, and the value of each alternative

is not necessarily known to the decision maker before exploration. At the beginning of an

arbitrary period, the decision maker has a consideration set and can choose to either stick to

the initial consideration set and explore the options within the consideration set or search for

new alternatives and add these new options to the initial consideration set for exploration

in subsequent periods. Consequently, the consideration sets in the subsequent periods nest

the preceding ones.

On the other hand, the DM may enrich her consideration sets through interactions with

external inputs such as recommendations and advertising content (Eliaz and Spiegler, 2011;

Goodman et al., 2013). To exemplify, consider the iterative search model introduced by

Masatlioglu and Nakajima (2013). A consumer initiates a search for a product to buy on

e-commerce platforms with limited prior knowledge about the available alternatives. As

the consumer evaluates some known or heard-of options, the platforms recommend her to

look at other related items. The recommendation attracts the consumer’s attention and

enlarges the consumer’s awareness, leading to an evolution of her consideration sets. Also,

in the competitive marketing model of Eliaz and Spiegler (2011), firms can use different

marketing strategies to manipulate consumer’s attention and the consumer’s considerate

sets evolve through interactions with the advertising content. The list of choice models

satisfying the expansion of consideration sets property also includes satisficing (Simon,

1955), rationalization (Cherepanov et al., 2013), and rational inattention (Caplin et al.,

2019). Details on these examples are given in Section 2.

Our model applies to choices of either a single individual in varying contexts (intrap-

ersonal) or different individuals in the population (interpersonal). In the latter case, it is

necessary that the preferences of all individuals are identical. This requirement is justified

if individuals’ preferences are commonly characterized by specific criteria (e.g., seeking the

most affordable housing, purchasing the highest-quality products, choosing the most envi-

ronmentally friendly cars, etc.). The shared preference assumption is also utilized in the

studies by Dardanoni et al. (2020), Cattaneo et al. (2020), and Hagiu et al. (2022). The

former paper interprets the single preference as the average utilities within the population.

Besides the expansion of consideration sets property, we investigate choice behaviors
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under certain assumptions regarding the formation of consideration sets. Our model is based

on the limited attention model of Masatlioglu et al. (2012) where the consideration set is

unaffected when overlooked alternatives are removed from the feasible set.2 This is one of the

common properties of consideration set formation documented in the psychology literature

(Broadbent, 1958). Under the standard choice theory assumption that the decision maker

evaluates all available alternatives, this condition is trivially satisfied. The property is

also descriptively appealing as it holds when decision-makers use heuristic decision rules to

determine their consideration sets (Masatlioglu et al., 2012).

Our first result is a characterization of choice behaviors resulting from such considera-

tion set formation structure and the expansion of consideration set property. We identify

two simple and intuitive behavioral postulates: weak monotonicity and independence. Weak

monotonicity requires that the likelihood of selecting an option should not increase when

a better alternative is added to the choice set. It is similar to but less restrictive than

the classic monotonicity axiom. Hence, our model can accommodate monotonicity viola-

tions, a feature of a stochastic choice theory (Manzini and Mariotti, 2018). Meanwhile,

roughly speaking, independence states that choice frequencies of alternative z must remain

unchanged when a higher-ranked alternative x is added to the menu given that there exists

an option y ranked between the x and z and chosen with a strictly positive probability (y

is attractive). Intuitively, the choice probability of z is independent of the presence of x

because the attractiveness of y absorbs any potential shifts.

In our first result, preferences are given exogenously. In certain contexts and applica-

tions, the preference might not be observable by the outside analyst and must be inferred

from the choice data. Endogenizing the preference also enhances the practical applicability

of our model. We discuss how to identify preferences when they are not observable. We

show that a regularity violation is sufficient for identifying preferences. We also provide

additional conditions to identify preference despite no regularity violation. Generally, the

endogenous preference is not unique when choice probabilities satisfy regularity. We ar-

gue that such non-uniqueness arises primarily because there are no restrictions on binary

choices. We proceed to establish that by imposing a simple property on binary choices,

the endogenous preference can be limited to at most two candidates, allowing for unique

representation as well.

Next, we discuss how to identify the consideration sets from choice data. Generally,

identifying the consideration sets is significantly challenging due to the fact they are typically

2When there is no structure on the formation of consideration sets, any random choice function can be
explained in our framework using the expansion property.
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not observable. The conventional approach in the literature is to use auxiliary data or

impose some strong conditions on the formation of consideration sets to narrow it down

significantly. Regarding the latter, for example, Caplin et al. (2019) assume that an option

is considered at a choice set if and only if it is chosen with a strictly positive probability.

Meanwhile, Honka (2014, p. 857) imposes a condition that if an alternative x is considered,

so are all better-ranked options. In our framework, both the contents and frequencies

of consideration sets can be uniquely identified when the choice data has full support.3

Even when the choice probabilities do not have full support, the list of candidates for

consideration sets can also be significantly narrowed down. The (unique) identification of

the composition and frequencies of consideration sets also allows us to perform comparative

statics of attentiveness levels at two probabilistic choices. We intuitively show that increased

levels of attentiveness result in improved decision-making outcomes. A converse relationship

also holds as better choices require heightened attentiveness levels.

Additionally, we consider two extensions of our baseline model by introducing a direction

of consideration sets’ expansion. In the first extension, we model agents whose consideration

sets follow a ranked list of items. Such situations are ubiquitous in daily life as the list can

be offered by a search engine, an online shopping platform, or a voting ballot, for example.

In the second extension, we allow for variations of the ranked list in different choice sets.

Put differently, the relative positions of two alternatives in the list may depend on the

availability of other options. An illustrative instance of this scenario involves a customer

conducting searches across multiple platforms (desktop, tablet, mobile) and using the list

of search results as her guiding list. In this context, it is well documented that a search

engine generates different first-page lists depending on its algorithms for each platform.

Finally, we apply our model to study a problem of optimal list design. In recent years,

online platforms such as Amazon, Target, and Apple’s App Store are increasingly assuming

a dual role, functioning both as marketplaces for third-party sellers and as a seller by offering

their own products on their marketplaces (Hagiu et al., 2022; Padilla et al., 2022; Farronato

et al., 2023). Empirical studies have indicated that these platforms often manipulate cus-

tomer search results to promote their own items (Chen and Tsai, 2023; Farronato et al.,

2023). This practice, commonly referred to as self-preferencing, has triggered heated policy

debates in the United States and European countries due to concerns about antitrust viola-

tions and potential negative effects on consumer welfare. Motivated by this self-preferencing

phenomenon, we consider a scenario where a designer wants to construct a list to maxi-

3A choice data has full support if every element in a choice set is chosen with a strictly positive probability.
Throughout the paper, we will use the full-support random choice function and positive random choice
function interchangeably.
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mize an objective function. Under mild assumption of the designer’s objective function,

we provide a simple algorithm to identify all optimal lists fully. Our primary finding is

that the optimal list may not align perfectly with the designer’s priority order. Intuitively,

the designer can strategically place alternatives perceived as inferior by customers and of

minimal value to her after options that are perceived as superior by customers and hold

high value to her. The ordering incentivizes customers to choose the high-value options,

resulting in greater benefits for the designer.

The rest of the paper is organized as follows. Section 2 introduces a Growing Attention

Model (GAM). Section 3 provides a characterization result. Section 4 states our results for

GAM with an endogenous preference. Section 5 identifies the content of consideration sets

and conducts a comparative analysis of attentiveness levels within two probabilistic choices.

Section 6 extends our baseline models to accommodate a direction of consideration sets’

expansion. Section 7 presents an application of our model to list design. Section 8 reviews

the literature and compares GAM to other related models of stochastic choice. Finally,

Section 9 concludes.

2 Model
Let X be the finite set of alternatives and X the set of all nonempty subsets of X. We

will refer to each element of X as a menu or a choice set. A consideration set is a map

Γ : X → X such that Γ(S) ⊆ S for all S ∈ X . Given the consideration set Γ(S), the DM

selects the best alternative in Γ(S) according to a complete and transitive preference ≻,

which is denoted by max(Γ(S),≻).4 Following Masatlioglu et al. (2012), a consideration

map Γ : X → X is an attention filter if Γ(S) ⊆ S and Γ(S) = Γ(S \ x) whenever x /∈ Γ(S).

Let T be the set of all attention filters. We say a collection of distinct attention filters

Γ ⊆ T has a growing attention structure if Γ can be sorted Γ = {Γ1,Γ2, ...,Γm} such

that Γ gradually expands: Γ1(S) ⊆ Γ2(S) ⊆ ... ⊆ Γm(S) for all S ∈ X . The expansion

property says that the agent becomes gradually more attentive as she considers more and

more options. This expansion structure of consideration sets is observed in several models

of stochastic choice and consideration set formation. We give some examples below. In all

examples, consideration sets are attention filters.

Example 1 (Satisficing, Simon (1955) and Aguiar et al. (2016)). Let v1, v2, . . . , vm be real

numbers satisfying v1 ≥ v2 ≥ · · · ≥ vm. Each vi is a crude measure of the value of the

alternatives, which might not be completely aligned with the underlying preferences. For

instance, vi may represent the salience of alternatives. The DM considers all alternatives

4Throughout the paper, we use max(Γ(S),≻) and ≻-best element in Γ(S) interchangeably.
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with values exceeding the reservation value vi. That is, Γi(S) = {x ∈ S : v(x) ≥ vi}.
Clearly, Γ1(S) ⊆ Γ2(S) ⊆ ... ⊆ Γm(S).

Example 2 (Rationalization, Cherepanov et al. (2013)). In the rationalization model, the

DM only considers alternatives that can be rationalized by a rationale (a linear order). Let

P = {P1, P2, . . . , Pn} be the set of all rationales. The DM’s consideration set for a given

menu S is Γ(S) = {x ∈ S : ∃i s.t. xPiy ∀y ̸= x, y ∈ S}. Let Ri ⊆ P be the set rationales

used by type i. If higher-order types use more rationales, that is Ri ⊆ Rj when i < j, then

it follows that consideration sets must expand: Γ1(S) ⊆ Γ2(S) ⊆ ... ⊆ Γm(S) for all S ∈ X .

Example 3 (Competitive Marketing, Eliaz and Spiegler (2011)). In the model of compet-

itive marketing, the consumer has an initial consideration set coupled with a consideration

function that determines whether new products are added for consideration. The consider-

ation function depends on the products and marketing strategies that firms use to advertise

the products. Firms can manipulate the customer’s attention by employing different mar-

keting techniques. Let X be the set of all products and M = {1, 2, . . . ,M} the set of

marketing strategies. Eliaz and Spiegler (2011) interpret elements in M as advertising in-

tensity with m1 > m2 implying that the advertisement under strategy m1 is more intense

than under strategy m2 (section 4.1 in their paper). There is a default option a∗ ∈ X

with marketing level Ma∗ ∈ M that is always included in the consideration set. The con-

sideration function is a mapping ϕ : X × M → {0, 1} with ϕ = 1 meaning the product

is considered. Eliaz and Spiegler (2011) further impose that ϕ(x,Mx) = 1 if and only if

Mx ≥ Ma∗
, where Mx is the advertising intensity of product x. Put differently, x is added

to the consideration set if and only if it is marketed at least the same level of intensity

as the default option. In our model, let Mx
i be the advertising intensity of product x at

type i. Suppose higher-order types experience more intensive advertising (higher types are

more targeted), and suppose that the advertising intensity of the default option does not

vary (it is always considered by the consumer so there is no need to adjust the intensity

level). That is, Ma∗

i = Ma∗

j for all i, j and Mx
i ≥ Mx

j for all x ∈ X whenever i ≥ j. Then

ϕ(x,Mx
j ) = 1 ⇒ ϕ(x,Mx

i ) = 1 if i ≥ j. Hence, if x ∈ Γj(S) then x ∈ Γi(S). Put differently,

consideration sets gradually expand over the sorted types.

Example 4 (Rational Inattention, Caplin et al. (2019)). Let Ω and X be the state space

and action space, respectively. There is a prior distribution over states µ ∈ ∆(Ω). Utility

function is state-dependent u : X × Ω → R. Given distribution µ, utility u, and a subset

of actions S ∈ X (a choice set) from which the DM must select, the DM chooses the

state-dependent random choice function π : Ω → ∆(A), where π(x|ω) is the probability of

choosing action x ∈ S in state ω ∈ Ω. The DM’s objective is to maximize her expected utility
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minus the Shannon mutual information costs between actions and states. Put differently,

the DM chooses function π to maximize

∑
ω∈Ω

µ(ω)

(∑
x∈S

π(x|ω)u(x, ω)

)
− λ

[∑
ω∈Ω

µ(ω)

(∑
x∈S

π(x|ω)lnπ(x|ω)

)
−
∑
x∈S

π(x)ln(x)

]
,

where π(x) =
∑
ω∈Ω

µ(ω)π(x|ω) is the unconditional probability that option x is chosen and

λ is the marginal cost of information (attention cost). For each state-dependent random

choice function π, Caplin et al. (2019) define the consideration set as the set of options

that are chosen with strictly positive probabilities: Γ(S) = {x ∈ S|π(x) > 0}. In the

canonical case (section 3.1 in their paper), the consumer is faced with m options in a set

S = {x1, x2, . . . , xm}. Among these, there is only one good option, and the remaining

ones are bad. The state space is set equal to the action space, implying that option xi is

the good option in state ωi. The utility function is u(xi, ωj) = uG if i = j (good option)

and u(xi, ωj) = uB < uG otherwise (bad option). The prior distribution µ(ωi) is the

prior probability that option xi is the good one, and the states are ordered according to

the perceived likelihood: µ(ωi) ≥ µ(ωi+1). Given the marginal cost of Shannon mutual

information λ > 0, Caplin et al. (2019) show that the consideration set comprises of the

first K ≤ m options: Γλ(S) = {x1, x2, . . . , xK} where the unique integer K satisfies

µ(ωK) >

∑K
k=1 µ(ωk)

K + exp
(
uG−uB

λ

)
− 1

≥ µ(ωK+1), with µ(ωt) = 0 when t > m

Clearly, Γλ1
(S) ⊆ Γλ2

(S) whenever λ1 ≥ λ2. Hence, if higher-index types in our model have

a lower marginal cost of information, then the consideration sets gradually expand over the

sorted types. Intuitively, the lower attention cost allows the DM to consider more and more

options.

A random choice function (RCF) is defined as a mapping π : X × X → [0, 1] such that∑
x∈S

π(x, S) = 1 and π(x, S) = 0 whenever x /∈ S. Here, π(x, S) denotes the probability of

choosing option x from menu S. Given the growing attention property, we define our model

as follows.

Definition 1. Given a preference ≻, a stochastic choice function π has a growing attention

model (GAM(≻)) representation if there exists a collection of growing attention filters Γ =
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{Γ1,Γ2, . . . ,Γm} and a probability measure µ on Γ such that

π(x, S) =
∑

i:max(Γi(S),≻)=x

µ(Γi), for all x ∈ S and S ∈ X (GAM (≻))

There are three unobservable objects in our model: preferences, the type distribution,

and the set of consideration sets. In the next section, we study the behavioral implications

of our model. Our goal is to assess whether the choice data has a GAM representation and

if it is possible to identify preference orderings from observed choice data. To achieve this,

we first examine whether a specific preference ordering can represent the data. In other

words, we assume that preferences are exogenously given. We still face a challenging task

due to various potential issues. Firstly, the data may lack a GAM representation altogether.

Secondly, even if there is a GAM representation, the underlying preference may deviate from

the proposed ordering. Thirdly, even if the proposed preference aligns with the underlying

preference ordering, it is still crucial to construct growing attention filters. In Section 3, we

provide conditions to characterize the model given a preference ordering. We later discuss

how to reveal preferences from observed choice data in Section 4.

3 Behavioral Characterization
Our characterization result uses two simple and intuitive axioms: weak monotonicity (w-

MON) and independence. The first axiom is a weakening of the regularity condition.

Axiom 1 (w-MON). π(y, S) ≤ π(y, S \ x) if x ≻ y.

Weak monotonicity states that adding a preferred alternative in the choice set will

decrease the choice probability of a dominated option. This axiom is similar to but less

restrictive than the usual regularity axiom where the choice probability cannot increase by

adding any alternative. Our axiom only requires regularity to hold when a better alternative

is added to the choice set.

This condition is a necessary condition for our model. Note that w-MON is trivially

satisfied when π(y, S) = 0. When π(y, S) > 0, there must exist a type Γi in the support such

that y = max(Γi(S),≻). If x ∈ Γi(S) then it is revealed that y ≻ x, which is a contradiction.

Hence, x ̸∈ Γi(S) and it follows that Γi(S) = Γi(S \ x) because Γi is an attention filter.

Therefore, max(Γi(S),≻) = max(Γi(S \ x),≻) and it follows π(y, S) ≤ π(y, S \ x).

The next axiom states conditions when adding a better alternative does not affect

choices. Assume that x is preferred to y and y is preferred to z. Hence, both x and y are

better than z. Then, as long as y is chosen with positive probability, adding even a better
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alternative does not influence the choice probability of z.

Axiom 2 (Independence). Suppose x ≻ y ≻ z and S ⊇ {x, y, z}. Suppose π(y, S) > 0.

Then π(z, S \ x) = π(z, S).

Independence is similar to the centrality axiom in Apesteguia et al. (2017).5 It says

that when removing a better alternative from the choice set, the choice probabilities remain

unchanged if there exists an alternative that is chosen with a strictly positive probability

and ranked between the removed alternative and the considered option.

This condition is also a necessary condition for our model. Since π has a GAM repre-

sentation and π(y, S) > 0, there must exist a type k such that y = max(Γk(S),≻). Among

such k, there is the smallest one, called k∗. Observe that y = max(Γk∗(S),≻) and x ≻ y

imply that x ̸∈ Γk∗(S). Then, it follows that Γk∗(S) = Γk∗(S\x) because Γk∗ is an attention

filter. Hence, y = max(Γk∗(S),≻) = max(Γk∗(S \ x),≻). Note that y = max(Γk∗(S),≻) =

max(Γk∗(S \x),≻) implies max(Γt(S),≻) ̸= z ̸= max(Γt(S \x),≻) for all t ≥ k∗ because of

the expansion property. Also, observe that max(Γt(S),≻) = max(Γt(S \ x),≻) for all t ≤
k∗−1. The reason is that if there exists t∗ ≤ k∗−1 that max(Γt∗(S),≻) ̸= max(Γt∗(S\x),≻)

then x must belong to Γt∗(S). However, it could not happen as y = max(Γk∗(S),≻) and

x ≻ y and Γt∗(S) ⊆ Γk∗(S). Finally, max(Γt(S),≻) = max(Γt(S \ x),≻) for all t ≤ k∗ − 1

and max(Γt(S),≻) ̸= z ̸= max(Γt(S \ x),≻) for all t ≥ k∗ imply that π(z, S \ x) = π(z, S).

We now state our characterization result for GAM(≻).

Theorem 1. RCF π has a GAM(≻) representation if and only if π satisfies w-MON and

Independence.

Theorem 1 shows that GAM is captured by two simple behavioral postulates that are

relatively easy to verify. The proof of Theorem 1 is constructive.6 First, we use the observed

choice frequencies and preferences to identify the ≻-best element within every type’s con-

sideration set. Such an identification does not require the knowledge about the underlying

structure of consideration sets and is possible thanks to a construction technique developed

by Filiz-Ozbay and Masatlioglu (2023). Subsequently, we define a consideration set by in-

cluding its best element that we just identified and all options within the lower contour

set of its best element. Finally, we use induction to prove that the consideration sets are

attention filters and satisfy the expansion property.

5It can be shown that the centrality axiom in Apesteguia et al. (2017) and the usual regularity condition
imply independence in our model. Hence, SCRUM is a subclass of GAM.

6All omitted proofs are given in Appendix A.
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4 Endogenous GAM
Our characterization provided in the previous section assumes that the preference order

in GAM is exogenous. In certain contexts, the preference might not be observable by the

outside analyst. In such instances, it becomes necessary to infer the preference order from

the choice data. This section presents the methodology for such identification. We first

define an endogenous GAM representation: A random choice function π has an endogenous

GAM representation if there exists a preference order ≻ such that π has a GAM(≻) repre-

sentation. Given the possibility of multiple endogenous GAM representations, we define a

revealed preference as follows.

Definition 2. Suppose π has an endogenous GAM representation. We say that x is revealed

to be preferred to y if x is preferred to y in every preference representing π.

The definition of revealed preference is conservative to ensure we avoid making erroneous

claims about the decision maker’s preferences.7 Next, we show that a regularity violation

is sufficient to uncover the revealed preference between a pair of alternatives. Axiom 1

states that if there exists a regularity violation, it must be that the alternative causing the

violation must be the less preferred alternative. In other words, if π(x, S) > π(x, S \ y) for
some S ⊇ {x, y} then x must be revealed to be preferred to y. The Proposition below states

this observation.

Proposition 1 (Revealed Preference-1). Suppose RCF π has an endogenous GAM repre-

sentation. If π(x, S) > π(x, S \ y) for some S ⊇ {x, y} then x is revealed to be preferred to

y.

The revealed preference from Proposition 1 is solely based on Axiom 1. Cattaneo et al.

(2020) also prove a similar result. In their model, the regularity violations were the only

source of revealed preference. Indeed, in the extreme case of no regularity violation in

the choice data, there is no revelation. In our model, other observations can reveal the

underlying preferences. Specifically, one can identify endogenous preference by checking

choices from binary and ternary menus with the help of Axiom 2. Assume we observe

that π has full support at {x, y, z} and π(x, {x, y, z}) ̸= π(x, {x, y}) and π(x, {x, y}) <

π(x, {x, z}) < π(y, {y, z}). By Axiom 2, the first two imply that we cannot have z ≻
y ≻ x. Then π(x, {x, y}) < π(x, {x, z}) rules out y ≻ z ≻ x following Independence and

w-MON as if y ≻ z ≻ x occurs then π(x, {x, z}) = π(x, {x, y, z}) ≤ π(x, {x, y}), which
7Other studies also use the same approach. For example, see Masatlioglu et al. (2012) and Cattaneo

et al. (2020), among others.
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is a contradiction. Third, by a similar argument, the inequality π(x, {x, z}) < π(y, {y, z})
excludes y ≻ x ≻ z. Therefore, all linear orders that rank y above x are effectively ruled out,

leading to x ≻ y. Our next result states this observation and offers a revealed preference

relationship that does not require regularity violations.

Proposition 2 (Revealed Preference-2). Suppose RCF π has an endogenous GAM repre-

sentation. If there exists z such that π has full support at {x, y, z} and one of the following

occurs

i) π(x, {x, y, z}) ̸= π(x, {x, y}) and π(x, {x, y}) < π(x, {x, z}) < π(y, {y, z}) ; or

ii) π(x, {x, y, z}) ̸= π(x, {x, z}) and π(x, {x, z}) < min{π(y, {y, z}), π(x, {x, y})},

then x is revealed to be preferred to y.

Based on Propositions 1 and 2, we introduce the following binary relation. For x ̸= y,

define:

xPy if i) ∃S ⊇ {x, y} s.t. π(x, S) > π(x, S \ y) or;

ii) ∃z such that π has full support at {x, y, z} and either

π(x, {x, y, z}) ̸= π(x, {x, y}) < π(x, {x, z}) < π(y, {y, z}), or

π(x, {x, y, z}) ̸= π(x, {x, z}) < min{π(y, {y, z}), π(x, {x, y})}.

By Propositions 1 and 2, if xPy then x is revealed to be preferred to y. Put differently,

this is the sufficient condition to identify the preference ranking between x and y. Addition-

ally, since the underlying preference is transitive, we also conclude that the decision maker

prefers x to z if xPy and yPz for some y, even when xPz is not directly revealed from the

observed choice data. Hence, the underlying preference must include the transitive closure

of P .

Using binary relation P , we can further restrict the set of possible candidates for the

underlying preferences. Note that Axiom 2 implies that if x, y ≻ z and π has full support

at {x, y, z} then π(z, {x, y, z}) must be equal to either π(z, {x, z}) or π(z, {y, z}), regardless
of the preference ranking between x and y. Hence, xPz and π(z, {x, y, z}) is not equal

to neither π(z, {x, z}) nor π(z, {y, z}) imply that z is revealed to be preferred to y. The

following Proposition states this observation.

Proposition 3 (Revealed Preference-3). Suppose RCF π has an endogenous GAM rep-

resentation. Suppose π has full support at {x, y, z}. Then xPz and π(z, {x, y, z}) ̸∈
{π(z, {x, z}), π(z, {y, z})} imply that z is revealed to be preferred to y.
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Given Propositions 1-3, our identification strategy of endogenous preferences is as fol-

lows. We begin by assuming that the RCF has an endogenous GAM representation, allowing

us to apply Propositions 1-3 to limit the possible preference orderings. Let Ψ be the set

of linear orders that include the transitive closure of the revealed preferences identified in

Propositions 1-3. The set Ψ must contain all endogenous preferences if they exist. We

then apply the characterization result in Theorem 1 to Ψ by checking Axioms 1 and 2 for

each order in Ψ. If Ψ = ∅ or Ψ ̸= ∅ but no ordering in Ψ satisfies both axioms, we can

conclude that the RCF has no GAM representation. Conversely, if there is one ordering

in Ψ satisfying the two axioms, the RCF has at least one GAM representation with the

preference ordering we just identified. To illustrate this identification process, we give a

simple example below.

Example 5. Table 1 provides a set of parametric probabilistic choices described by πα,

where α ∈ (0, 0.5).

πα {x, y, z} {x, y} {x, z} {y, z}
x α 0.30 0.50 −
y 0.60− α 0.70 − 0.60
z 0.40 − 0.50 0.40

Table 1: Probabilistic choice functions.

Suppose πα has an endogenous GAM representation. When α ∈ (0.3, 0.5), there is one

regularity violation in the data: πα(x, {x, y, z}) > πα(x, {x, y}). Proposition 1 then implies

that x is revealed to be preferred to z. Applying part i) of Proposition 2 yields x is revealed

to be preferred to y. Given that πα(y, {x, y, z}) ̸∈ {πα(y, {x, y}), πα(y, {y, z})} and xPy (by

the definition of P ), it follows from Proposition 3 that y is revealed to be preferred to z.

By transitivity, there is only one candidate for the underlying preferences: x ≻1 y ≻1 z.

Put differently, Ψ = {≻1}. It is routine to show that Axioms 1 and 2 are satisfied with

≻1. Therefore, πα has a GAM representation, and the underlying preference must be ≻1

(unique identification).

When α ∈ (0, 0.3), the choice data satisfies regularity, and Proposition 1 is silent on the

revealed preferences. Part i) of Proposition 2 still implies that x is revealed to be preferred

to y, and Proposition 3 indicates that y is revealed to be preferred to z. Hence, Ψ = {≻1}
and πα has a GAM(≻1) representation (unique identification). Finally, when α = 0.3,

Propositions 1-3 identify no reveal preferences and Ψ covers all linear orders. By checking

Axioms 1-2, πα has two GAM representations with ≻1 and ≻2, where ≻2 is the opposite of

≻1: z ≻2 y ≻2 x.
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We conclude this section by commenting on the number of possible preferences repre-

senting the data. In Example 5 above, we have identified that there are at most two possible

preferences representing data for all α ∈ (0, 0.5). One might wonder whether this is specific

to this example. In general, the smaller set of preferences is desirable for the purpose of

welfare analyses since we can reveal more about the underlying preferences. In Appendix B,

we show that under two mild properties, there are at most two preferences. We also illus-

trated that these two properties are implied by the well-known conditions which have been

supported by the existing empirical evidence. More importantly, this result is independent

of the size of X; see Appendix B for details.

5 Identification of Consideration Sets and Com-

parative Statics
Identifying consideration sets provides valuable insights into decision-making processes.

Such insights are crucial for managerial decisions because they shed light on which items

or products the DM actively evaluates. The absence of understanding consideration sets

can result in poor-quality managerial choices with highly unfavorable outcomes. A case in

point is highlighted by Hauser (2014, p. 1688), who illustrates that substantial investments

in aspects like reliability, style, interior design, and quality failed to prevent two American

automakers from declaring bankruptcy in 2009. This failure stemmed from consumers not

being exposed to the improved products, as these products were never included in their

consideration sets in the first place.

In this section, we study how to identify consideration sets within our framework. We

begin with a uniqueness result. Theorem 2 below states that the GAM(≻) representation,

if it exists, is unique when the choice data has full support.

Theorem 2. Suppose a positive RCF π has a GAM(≻) representation with Γ and µ being

the collection of distinct growing attention filters and probability measure, respective. Then

(Γ, µ) is unique.

The uniqueness of the probability measure µ in Theorem 2 comes from the construction

of types outlined in the proof of Theorem 1. The construction provides the exact weights

for each type in the support. The uniqueness of the consideration sets results from the

full-support assumption of the random choice function. This assumption also allows us to

identify the composition of consideration sets uniquely. As mentioned earlier, we can always

identify the ≻-best element within each type’s consideration set from the observed choice

data. It turns out that the identification of ≻-best elements is sufficient to pin down the
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consideration set’s composition. In the proof of Theorem 2, we show that the consideration

set of each type has the following structure: Γi(S) = {x ∈ S : max(Γi(S),≻) ≿ x} for all i

and S ∈ X . Put differently, each type’s consideration set includes its ≻-best element and

all options within the lower contour set of its best element.

To appreciate the unique identification of both the composition and frequency of con-

sideration sets, note that there are three sources of variation in a GAM. Firstly, we can

vary the probability measure µ. Secondly, we can change the observed characteristic of the

consideration sets, meaning that we can vary the collection of ≻-best elements that results

from applying preference ≻ to the collection of consideration sets. Finally, variations can

occur in the unobserved characteristic of the consideration sets. This means that even if the

collection of ≻-best elements remains unchanged, consideration sets can still vary. Theo-

rem 2 consolidates these three types of variation and asserts that no variation is admissible

when the choice data has full support. To illustrate Theorem 2, consider the RCF given in

Example 5.

Example 5 (Continued). We identified that when α ∈ (0, 0.3), πα has a unique GAM

representation with preference x ≻ y ≻ z. Additionally, πα has full support when α ∈
(0, 0.3). Hence, Theorem 2 is applicable, and (Γ, µ) must be unique. The collection of

consideration sets and type distribution are identified as follows.

S Γ1(S) Γ2(S) Γ3(S) Γ4(S) Γ5(S)
{x, y, z} {z} {y, z} {y, z} {y, z} {x, y, z}
{x, y} {y} {y} {y} {x, y} {x, y}
{x, z} {z} {z} {x, z} {x, z} {x, z}
{y, z} {z} {y, z} {y, z} {y, z} {y, z}
µ 0.4 0.1 0.2 0.3− α α

Table 2: Identified (Γ, µ) for πα with α ∈ (0, 0.3).

Comparative Statics of Attentiveness Levels

To provide a practical application of Theorem 2, we illustrate that the (unique) iden-

tification of consideration sets allows us to compare the attentiveness levels within two

GAM potentially characterized by distinct preferences. Understanding attentiveness levels

is important for effective communication as it helps tailor the message appropriately. For

instance, in marketing, by understanding how attentive their audience is, firms can create

engaging advertisements and promotional campaigns.

We define attentiveness as the ratio between the number of options the decision maker
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considers and the total number of available alternatives. Put differently, we quantify atten-

tiveness by comparing the size of consideration sets to the size of the menu. For notation

simplicity, we write π = (Γ, µ,≻) if π can be written as a probability measure µ over a

collection Γ of attention filters given preference ≻, where the collection Γ is not necessarily

growing. Given two RCFs π = (Γ, µ,≻) and π′ = (Γ′, µ′,≻′), we say that π is more attentive

than π′ if

∑
i:

|Γi(S)|
|S| ≥k

µi ≥
∑

j:
|Γ′

j
(S)|

|S| ≥k

µ′
j , for all S ∈ X and k ∈

{
1

|S|
,
2

|S|
, . . . ,

|S|
|S|

}

In other words, π is more attentive than π′ if the size of consideration sets under π first-order

stochastically dominates that under π′.

To establish a link between observed choice data and attentiveness levels, we need a

partial order between two RCFs as follows.

Definition 3 (First-order stochastic dominance, FOSD). Let ≻ and ≻′ be two prefer-

ence orders. Let U≿(x, S) be the upper contour set of x in S given preference ≻ and

π(U≿(x, S), S) the cumulative choice probabilities of all elements in U≿(x, S). RCF π first-

order stochastically dominates RCF π′ (π FOSD π′) if π(U≿(x, S), S) ≥ π′(U≿′(x′, S), S)

for all S ∈ X and x, x′ ∈ S such that |U≿(x, S)| = |U≿′(x′, S)|.

Corollary 1 below states the relationship between attentiveness levels and observed

choice data. It directly follows from the unique identification of both the composition and

frequency of consideration sets in Theorem 2.

Corollary 1. Suppose RCFs π and π′ have GAM(≻) and GAM(≻′) representations, re-

spectively. Suppose both of them have full support. Then π is more attentive than π′ if

and only if π FOSD π′.

Corollary 1 intuitively says that a higher level of attentiveness leads to improved out-

comes. Furthermore, better decision-making similarly requires increased attentiveness lev-

els. Notably, Corollary 1 does not require that the preferences or collections of consideration

sets in two RCFs are identical.

The subsequent Corollary partially relaxes the full-support assumption laid out in Corol-

lary 1. Expressly, it only necessitates the presence of one positive random choice function.

This relaxation, however, comes at a cost: it no longer guarantees that higher attentiveness

levels will invariably lead to improved decision-making outcomes. The Corollary also follows

from Theorem 2.
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Corollary 2. Suppose RCFs π and π′ have GAM(≻) and GAM(≻′) representations, re-

spectively. Suppose π has full support and FOSD π′. Then π is more attentive than π′.

6 List-based expansion of consideration sets
In our baseline model, we do not impose a particular direction on the expansion of consid-

eration sets. In this section, we introduce such a direction. For example, imagine someone

who comes across a ranked list of items (Yegane, 2022; Manzini et al., 2023), such as search

results on a search platform. Because people have limited attention spans, it is often not

feasible for them to go through all the results exhaustively. Instead, when going through

the list, a decision-maker explores various options to create their consideration set, but they

may only include a subset of the available alternatives due to their limited attention. We

make the assumption that this consideration set follows the list that the individual faces:

if an option x is included in the consideration set, then every feasible alternative that ap-

peared before x in the list is also included. In simpler terms, when an alternative is deemed

worthy of consideration, all the alternatives listed before are also considered.8

Formally, we write y ◁ x, or equivalently, x ▷ y if x appears after y in the list, where

▷ is the underlying list order.9 The consideration sets satisfy the following property: if

x ∈ Γ(S) and x ▷ y then y ∈ Γ(S). A stochastic choice function π is said to have a

GAM▷(≻) representation if it has a GAM(≻) representation where consideration sets in

the support have a list-based structure with respect to ▷.10 We show that GAM▷(≻) can

be characterized by three axioms: ▷-wMON, ▷-Independence, and Identity (IDE). The

first two are reminiscent of w-MON and Independence, while the last axiom captures the

list-based structure of consideration sets.

Axiom 3 (▷-wMON). Suppose x ⊵ y and y ≻ z. Then π(z, S) ≤ π(z, S \ x) for all

S ⊇ {x, y, z}.

To understand ▷-wMON, it is essential to recognize that the condition x⊵ y indicates

that either x ≡ y or x appears after y in the list. This implies that if the agents consider

option x, they also consider option y. Therefore, ▷-wMON states that adding an arbitrary

alternative (x) to the choice set that, if considered, subsequently leads to the consideration

of a preferred option (y) will (weakly) decrease the choice probability of a dominated item

(z). This is intuitive as the presence of x in the consideration set ensures the presence of

8This assumption is also used in other studies. For example, see Honka (2014, p. 857) and Cattaneo
et al. (2023), among others.

9In Appendix C, we consider the context-dependent lists and provide a characterization result to accom-
modate such generalization.

10Using the proof of Theorem 1, it can be shown that any GAM(≻) has a GAM≻(≻) representation.
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y, and due to the dominance of y over z, the likelihood of selecting z decreases. Notably,

▷-wMON constitutes a generalization of w-MON in Axiom 1. Indeed, setting x ≡ y in

Axiom 3 yields Axiom 1. Additionally, in cases where x ̸= y but the list order aligns with

the preference order on the pair (x, y), ▷-wMON directly follows from w-MON due to the

transitivity of the preference.11

Axiom 3 is necessary for GAM▷(≻). To see why, observe that it is trivially satisfied

when π(z, S) = 0. When π(z, S) > 0, there exists a type i in the support such that

max(Γi(S),≻) = z. Suppose x ∈ Γi(S). Since Γi(S) has the list-based structure and

x ⊵ y, it follows y ∈ Γi(S). Therefore, z = max(Γi(S),≻) ≿ y, which is a contradiction.

Hence, x ̸∈ Γj(S). Then Γi(S) = Γi(S \ x) since Γi is an attention filter. Therefore,

max(Γi(S),≻) = max(Γi(S \ x),≻) and it follows π(z, S) ≤ π(z, S \ x).

Axiom 4 (▷-Independence). Suppose x ⊵ y and y ≻ z and π(z, S) > 0. Then π(t, S) =

π(t, S \ x) for all S ⊇ {x, y, z, t} and t such that z ▷ t.

To understand ▷-Independence, note that condition x ⊵ y again implies that if the

agents consider option x, they also consider option y. Additionally, since z appears after t

in the list (because z ▷ t) and the agents choose z with a strictly positive probability in S,

it must be the case that the agents consider both z and t in S. It follows that z must be

preferred to t, hence, ▷-Independence states that introducing an arbitrary alternative (x)

to the choice set that, if considered, subsequently results in the consideration of preferred

options (y, z) will not influence the choice probability of a dominated item (t). Intuitively,

the choice probability of t is independent to the presence of x because the dominance of y

and z absorbs any potential changes.

It is worth noting that when the list order corresponds to the preference order, ▷-

Independence follows directly from Independence in Axiom 2 because of the transitivity of

the preference.12 To see why ▷-Independence is necessary for a GAM▷(≻) representation,

observe that there exists a type i such that max(Γi(S),≻) = z because π(z, S) > 0. Among

such i, there exists the biggest one i∗. Consider an arbitrary j ≤ i∗. Suppose x ∈ Γj(S).

It follows y ∈ Γj(S) because x ⊵ y. Therefore, max(Γj(S),≻) ≿ y. However, this could

not happen as y ≻ z = max(Γi∗(S),≻) ≿ max(Γj(S),≻) ≿ y, where max(Γi∗(S),≻) ≿

max(Γj(S),≻) comes from the fact that Γi∗(S) nests Γj(S) since i∗ ≥ j. Hence, x ̸∈ Γj(S).

Since Γj is an attention filter, it is the case that Γj(S) = Γj(S \x). Therefore, max(Γj(S),≻
11To see this, suppose x ⊵ y ⇔ x ≿ y. By transitivity, x ⊵ y and y ≻ z would imply x ≿ y ≻ z. Then,

w-MON implies π(z, S) ≤ π(z, S \ x).
12Unlike ▷-wMON that generalizes w-MON, ▷-Independence does not constitute a generalization of In-

dependence. However, ▷-Independence coupled with the Identity in Axiom 5 generalize the Independence
axiom.
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) = max(Γj(S \ x),≻) for all j ≤ i∗ and it follows π(t, S) = π(t, S \ x) for all t ∈ S such

that z ▷ t.

Axiom 5 (Identity - IDE). x▷ y and y ≻ x imply π(x, S) = 0 for all S ⊇ {x, y}.

Given a binary pair (x, y), the Identity axiom above says that if the preference and

list orders are in conflict, the option appearing later in the list must not be chosen. The

intuition behind Axiom is 5 simple. If x is considered, then so is y due to its earlier position

in the list. Consequently, x is never selected because the agents prefer y to x. We now state

the characterization result for GAM▷(≻).

Theorem 3. RCF π has a GAM▷(≻) representation if and only if it satisfies ▷-wMON,

▷-Independence, and IDE.

The proof of Theorem 3 closely parallels that of Theorem 1. Both proofs identify the

best element within each type’s consideration set. The primary difference between the two

lies in the construction of consideration sets. The idea in the proof of Theorem 3 is as

follows. Consider a choice set S and suppose a is the ≻-best element in the consideration

set Γ(S) we already identified. We enumerate all elements in S as x|S| ▷ x|S|−1 ▷ · · ·▷ x1,

with |S| being the cardinality of S. We then define the consideration set as:

Γ(S) = {x1, x2, . . . , xi∗}, where i∗ is the largest integer such that a ≿ xt ∀t ≤ i∗

The construction ensures that Γ(S) has the list-based structure with respect to ▷ and

a is the ≻-best element in Γ(S). In the proof of Theorem 3, we demonstrate that this

construction is always feasible and results in consideration sets being attention filters and

satisfying the expansion property.

Unknown Lists

Our result in Theorem 3 relies on the exogeneity of the list order. Such a situation

is justified when the list is observed by an outside analyst (when the list corresponds to

a Google search page, for example). In certain contexts, the list may not be discernible.

Motivated by this observation, we demonstrate to what extent we can identify the list

order from observed choice data. A stochastic choice function π is said to have a GAM(≻)

representation with unknown lists if there exists a linear order ▷ such that π has a GAM▷(≻
) representation where consideration sets have the list-based structure with respect to ▷.

Remark 1 below states our identification result for the unknown lists.

Remark 1. Suppose RCF π has a GAM(≻) representation with unknown lists. Then, x
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must appear after y (denoted as xLy, with L being a binary relation for the list order) in

any list representing π if there exists y such that x ≻ y and π(y, S) > 0 for some S ⊇ {x, y}.

Remark 1 directly follows from the IDE axiom introduced earlier (Axiom 5). The Iden-

tity axiom states that given any pair (x, y), if the list order and preference order contradict

each other, the option appearing later in the list has a zero probability of being selected.

Remark 1 operationalizes on this idea. In Remark 1, since x ≻ y and y is chosen with a

strictly positive probability, the list order and preference order must agree on (x, y). Hence,

x appears after y in the list.

Whenever the choice data has full support, Remark 1 helps us to uniquely identify the

list order. Moreover, in this situation, the list order must coincide with the preference

order. When π is not positive, we can partially identify the unknown lists. Any list orders

representing π must be included in the transitive closure of the binary relation L defined

in Remark 1.

7 An Application: Optimal List Design
In recent years, there has been a growing body of literature investigating the manipulation

of online behaviors. Several studies have documented that online platforms such as Amazon,

Walmart, Google Shopping, and Apple App Store can intentionally manipulate their offer-

ings to favor their own products (Hagiu et al., 2022; Padilla et al., 2022; Farronato et al.,

2023; Motta, 2023). This manipulation involves tactics such as strategically recommending

their own products or prominently featuring their offerings. For example, on Amazon, Far-

ronato et al. (2023) find that Amazon-labeled products consistently receive higher rankings

in consumer search results compared to products that are observably comparable.

Motivated by this phenomenon, in our application, we assume that there is a designer

who wants to construct a list in order to maximize an objective function.13 For each item

x in the list, let w(x) ∈ R+ be the weight that the designer assigns to x. One can interpret

w(x) as the designer’s utility of x, or in the case of online shopping, the revenue that x brings

to the platforms. We assume that the weights are pairwise distinct, that is, w(x) ̸= w(y)

when x ̸= y.14 As before, let π(x, L) be the probability that x is selected from a list L.

For an arbitrary L, we assume the designer’s objective function, denoted as W (L), satisfies

three conditions:

13Manzini et al. (2023) study a similar application in a completely different framework where the firm
maximizes the approval ratings. In our application, the designer’s objective functions and optimal list results
are significantly different from theirs.

14We do not need this assumption in designing an optimal list. However, it allows us to characterize the
set of all optimal lists fully.
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1. W (L) depends on the weights of items and their probabilities of being selected.

2. An unchosen option will not impact W (L).

3. For two lists L and L′ that only differ in the chosen probabilities of x and y (π(z, L) =

π(z, L′) for all z ̸= x, y)

W (L) > W (L′) if w(x) > w(y) and π(x, L) > π(x, L′)

The first two conditions above are straightforward. The last condition indicates the mono-

tonicity of the objective function. It simply states that the designer prefers the list where

items with greater weights are selected with higher probabilities. The class of functions

satisfying these three conditions includes the well-known family of functions with constant

elasticity of substitution (W (L) = (
∑

x∈L π(x, L)w(x)
σ−1

σ )
σ

σ−1 , where σ > 1 is the elasticity

of substitution).15 Before presenting the analysis, we formally define an optimal list.

Definition 4. The list is optimal if it solves max
L∈L

W (L), where L is the set of all possible

lists.

In what follows, we denote a list L as [x1, x2, . . . , x|L|] with xj being the item in the

jth position. We write xjLxi if xj appears after xi in the list, i.e., when j > i. Following

our GAM framework, suppose there are |L| types of agents. For i = 1, 2, . . . , |L|, agents
type i consider the first i options in the list: Γi(L) = {x1, x2, . . . , xi}. All types have the

same preference, denoted by ≻. The designer observes the preferences of agents, but she is

unaware of the probability distribution among them.16 Furthermore, suppose that the type

distribution is positive, i.e., the probability of agents type i is nonzero for all i.17 Given

preference ≻ and weights w, we introduce the following simple L-algorithm to construct

an optimal list.

15The expected utility (W (L) =
∑

x∈L w(x)π(x, L)) and Cobb-Douglas objective functions (W (L) =∏
x∈L w(x)π(x,L)) are special cases of this family when the σ → ∞ and σ → 1, respectively.
16When the preference is not unobserved, we will show that the top position in an optimal list is al-

ways identified as the item with the highest weight. Subsequent positions in the optimal list are generally
ambiguous.

17This assumption, like the pairwise distinction of weights assumption, is unnecessary in designing an
optimal list. However, it helps us to identify the set of all optimal lists.
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L-algorithm

1. Start the list from the item with the highest weight. That is, x1 =

argmax
x∈L

w(x).

2. Let L≻(x1) be the lower contour set of x1 given preference ≻. For the

2nd, 3rd, 4th, . . . , (k+1)th positions in the list, where k = |L≻(x1)|,
randomly pick an element from L≻(x1) without replacement until

the lower contour set is exhausted. Put differently, (x2, x3, . . . , xk+1)

constitutes an arbitrary permutation of all elements in L≻(x1).

3. Choose xk+2 = argmax
x:x ̸∈L≻(x1)

w(x), i.e., xk+2 is the option with the high-

est weight among those in the upper contour set of x1.

4. Follow the same procedure as in step 2 by constructing the lower

contour set of xk+2 among items that have not been positioned and

randomly placing its elements at positions after xk+2 until the set is

exhausted.

5. Repeat steps 3-4 until every position in the list is occupied.

The L-algorithm starts by selecting the item with the highest weight and positions it

at the top of the list. Subsequently, it constructs a lower contour set of the initially placed

option, from which alternatives are randomly chosen without replacement and gradually

added to the list. The process continues by identifying the item with the highest weight

among those in the upper contour set of the last positioned item that is chosen with a

strictly positive probability and assigning it to the subsequent available position in the list.

This step is followed by the construction of the lower contour set for the newly positioned

item, restricting to options that have not been positioned, and from the set, once again,

alternatives are randomly chosen without replacement and added to the list. This iterative

process is repeated until all positions in the list are occupied. We give a simple example

below to illustrate the L-algorithm.

Example 6. Suppose there are six items labeled as y1, y2, . . . , y6. Suppose the weight is

w(yi) = i for all i. The agent’s preference is y4 ≻ y5 ≻ y1 ≻ y6 ≻ y2 ≻ y3. Applying the

L-algorithm:

• Step 1: Because y6 = argmax
y∈L

w(y), the list starts with y6: L = [y6, ., ., ., ., ., .].
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• Step 2: The lower contour set of y6 is L≻(y6) = {y2, y3}. We update the list with y2

and y3: L
1 = [y6, y2, y3, ., ., ., .] and L2 = [y6, y3, y2, ., ., ., ., .].

• Step 3: Update the lists with y5 = argmax
y: y ̸∈L≻(y6)

w(y): L1 = [y6, y2, y3, y5, ., ., .] and

L2 = [y6, y3, y2, y5, ., ., .].

• Step 4: Among items that have not been positioned, the lower contour set of y5 is

L≻(y5) = {y1}. The lists are then updated with y1: L1 = [y6, y2, y3, y5, y1, .] and

L2 = [y6, y3, y2, y5, y1, .].

• Step 5: Update the lists with y4.

The algorithm results in lists L1 = [z6, z2, z3, z5, z1, z4] and L2 = [z6, z2, z3, z5, z1, z4].

Theorem 4 below shows that the set of lists generated by running the L-algorithm fully

characterizes all optimal lists. This result holds for any positive type distributions and any

preferences. Furthermore, it does not necessitate a specific functional form for the objective

function and also applies to incomplete lists (when the lists only include a subset of all

available options).

Theorem 4. The list is optimal if and only if it results from running the L-algorithm.

Theorem 4 implies that the optimal list order does not necessarily agree with the weight

ordering. Consequently, the designer might not place their preferred items at the top

positions of the list. While the first item is always the one she prefers the most (because of

step 1 in the L-algorithm), the designer can allocate subsequent positions to options with

relatively low weights. These items share common attributes of being unattractive and

inferior compared to the top-ranked item. Intuitively, such an order establishes incentives

for the agents to choose the top-ranked item, thereby maximizing the designer’s utility. In

Example 6 above, the L-algorithm identified two optimal lists: L1 = [z6, z2, z3, z5, z1, z4]

and L2 = [z6, z3, z2, z5, z1, z4]. In both lists, items in the 2nd and 3rd positions have little

value to the designer.

The proof of Theorem 4 relies on the following result. Consider an arbitrary list L and a

list L′ obtained from L by switching the positions of xi and xi+k while keeping the positions

of all other items unchanged. Then the consideration sets of agents type j, with j ≥ i+ k

or j ≤ i − 1, remain the same under L and L′. Hence, the difference in the designer’s

objective function under L and L′ depends entirely on the behaviors of agents type j, with

i ≤ j ≤ k − 1.
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For a given list L, let {xa1
, xa2

, . . . , xak
} be an ordered set of distinct options that are

chosen with strictly positive probabilities under L with xak
≻ xak−1

≻ · · · ≻ xa1
= x1. This

set is important in designing the optimal list because it impacts the designer’s utility. The

proof of Theorem 4 includes four Observations 1-4 that explore different characteristics of

the set {xa1
, xa2

, . . . , xak
}.

Observation 1 below says that when x and y are selected with strictly positive prob-

abilities under the optimal list, x appears before y if and only if the designer’s weight of

x is higher. This is because if the weight of y is higher and y appears later in the list,

the designer is strictly better off by switching the positions of x and y while keeping the

positions of all other items unchanged. Observation 1 also implies that the optimal list

order must align with the weight ordering on the portion of the list where items are chosen

with strictly positive probabilities.

Observation 1. Suppose list L is optimal. Then w(xai+1
) < w(xai

) for all i = 1, 2, . . . , k−1.

Observation 2 below claims that the first item in every optimal list must be the one with

the highest weight. This directly verifies step 1 in the L-algorithm. Notably, this result

holds under every preference. Hence, the top position in the list must have the highest weight

regardless of the observability of the agent’s preference. The rationale behind Observation

2 is that if the highest-weight item is not placed at the top position, the designer has a

strictly higher utility by moving it to the first place while keeping the relative positions of

all other items unchanged.

Observation 2. Let x∗ = argmax
x∈L

w(x). Then x1 = x∗ in every optimal list.

Observation 3 below establishes that any options in the lower contour set of xai
must

precede xai+1
in the optimal list. It directly verifies step 2 in the L-algorithm. The ratio-

nale behind Observation 3 is that if there exists an option in the lower contour set of xai

positioned after xai+1
in the list, the designer is strictly better off moving it to a position

before xai+1
.

Observation 3. Suppose list L is optimal. Suppose that xai
≻ y for some i ≤ k− 1. Then

xai+1
Ly.

Observation 4 below states that xat
must be the one with the highest weight among

those in the upper contour set of xat−1
. Put differently, any option with a strictly positive

probability of being chosen must have the highest weight among those in the upper contour

set of the previous option that is selected with a strictly positive probability.
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Observation 4. Suppose list L is optimal. Then xat
= argmax

x:x∈L s.t. x≻xat−1

w(x) for all t =

2, 3, . . . , k.

Together, Observation 3-4 confirm steps 3-5 in the L-algorithm. Hence, Observations

1-4 verify the optimality of any list generated from running the L-algorithm.

In summary, under the self-preferencing idea where the designer can manipulate the list

to maximizer her utility, the optimal list ordering depends on both the agents’ preferences

and the designer’s priority ranking. Moreover, the designer can strategically position items

of little value to her near the top of the list. This observation is crucial in understanding

the designer’s behaviors and identifying list manipulation. It indicates that the presence of

low-value options (to the designer) near the top of the list does not automatically eliminate

the potential issue of information manipulation.

8 Literature Review
Our paper builds upon the existing literature on consideration sets that has been stud-

ied in marketing and economics (Wright and Barbour, 1977; Hauser and Wernerfelt, 1990;

Masatlioglu et al., 2012; Hauser, 2014; Caplin et al., 2019). Firstly, our research relates to

a class of theoretical papers that studies probabilistic choices with an ordered collection of

heterogeneous types. Within the framework of RUM, Apesteguia et al. (2017) introduce the

single-crossing random utility model (SCRUM), where the collection of preferences satisfies

the well-known single-crossing property. As shown in Section 2, our model nests SCRUM

as a particular case. Petri (2023a) also studies SCRUM but confines it to binary choices.

Apesteguia and Ballester (2023) characterize RUM with ordered menus and constrained

domains, accommodating limited data in empirical contexts. Outside the framework of

RUM, Filiz-Ozbay and Masatlioglu (2023) introduce the progressive random choice (PRC)

model. PRC has an ordered collection of choice functions instead of preferences and hence

can accommodate different types of bounded rationality. Petri (2023b) studies an ordered

collection of choice correspondences rather than a collection of choice functions, thus gen-

eralizing the PRC model. Our research differs from these papers as we refrain from directly

imposing a structure on the collection of types. Instead, we establish a structure through

conditions applied to the underlying consideration sets.

Secondly, our work is also related to the literature addressing the identification of con-

sideration sets. Theoretically, Manzini and Mariotti (2014) demonstrate that the preference

relation and alternative-specific consideration probabilities can be uniquely inferred from

choice data. Cattaneo et al. (2020) investigate a random attention model and provide partial

identification results. Empirically, Abaluck and Adams-Prassl (2021) show that considera-
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tion sets can be identified by exploiting the variations in asymmetric demand responses to

other product characteristics. Barseghyan et al. (2021) explore decision-making under risk

in cases where the collection of preferences satisfies the single-crossing property, demon-

strating that identification is feasible in most scenarios. Finally, Dardanoni et al. (2020)

develop a framework for identifying the distribution of cognitive characteristics from aggre-

gate choice shares with minimal data, accounting for the heterogeneity of both attention

capacities and preferences.

Comparison to related models

As mentioned previously, the SCRUM of Apesteguia et al. (2017) is a specific case within

the GAM framework. Since any stochastic choice can be represented using the PRC model

proposed by Filiz-Ozbay and Masatlioglu (2023), GAM is nested in PRC. Filiz-Ozbay and

Masatlioglu (2023) also characterize a special case of PRC, called less-is-more PRC (L-PRC),

where welfare is improved when having fewer options (choice overload phenomenon). L-PRC

and GAM are independent. L-PRC requires the monotonicity condition to hold on upper

contour sets.18 Consequently, it requires the choice frequencies of the worst alternative

in a set to (weakly) violate the monotonicity condition. GAM, on the other hand, does

not allow any strict regularity violations because choice probabilities must adhere to the

w-MON axiom.19

Cattaneo et al. (2020) propose a random attention model (RAM) of stochastic choice

where the randomness of choices comes from the random consideration of the decision-

makers. The revealed preference in RAM (Lemma 1 in their paper) relies on regularity

violations and is identical to the revealed preference in Proposition 1 in our paper. Since

RAM is exclusively characterized by the revealed preference, endogenous GAM is nested

in RAM. Having said that, in our model, we can identify preferences even in the absence

of regularity violations (Propositions 2-3). Moreover, our model allows for the unique

identification of consideration sets. These additional results are not featured in RAM.

Some other well-known models are also included in RAM, including the random utility

model (RUM), Manzini and Mariotti (2014) (MM), and Brady and Rehbeck (2016) (BR).

First, GAM is distinct from BR because there is a default option in BR, and it is unclear

how to remove the default option from the model.20 Second, RUM and MM require the

classic regularity condition to hold. Hence, GAM is also independent of both RUM and

18That is, for all x ∈ T ⊂ S ⊆ X such that π(x, S) ̸= 0, π(U(x, S), S) ≤ π(U(x, T ), T ).
19It is noteworthy that the intersection of GAM and L-PRC nests a full-support SCRUM, where the choice

probabilities of the worst alternative remain unchanged. Specifically, under a SCRUM with full support, if
z is the worst alternative in set S, then it holds that π(z, T ) = π(z, S) for all T ⊆ S with z ∈ T .

20In their words: “Whether the default option can be removed... remains an open question.”
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MM since the endogenous GAM can accommodate regularity violations. In this regard,

GAM is also distinct from a class of models that satisfies regularity, such as the additive

perturbed utility model of Fudenberg et al. (2015), fixed distribution satisficing model of

Aguiar et al. (2016), or attribute rule model of Gul et al. (2014).

9 Conclusion
We have introduced the Growing Attention Model to capture the idea that the decision

maker’s attention can be sorted in an ascending order. Our main theoretical contribution

lies in the development of a framework that facilitates the unique identification of both

the contents and frequencies of consideration sets, given the unobserved heterogeneity of

attention. Even when the preference is not observed, we demonstrate that full identification

can still be achieved under certain simple conditions. Such identification of consideration

sets holds significant value for managerial decision-making and enables comparisons of at-

tentiveness levels associated with two probabilistic choices. Our work can be extended in

several directions. Firstly, exploring alternative structures and properties of consideration

sets, such as the dynamics of attention, may yield fresh insights into individual decision-

making processes. Secondly, extending our model to empirical settings holds promise for

practical applications.
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APPENDIX

Appendix A Omitted Proofs
Proof of Theorem 1. The necessity part is shown in the paper. We prove the sufficiency.

The proof uses a construction technique in Filiz-Ozbay and Masatlioglu (2023). For a given

linear order ▷ and an arbitrary RCF π, Filiz-Ozbay and Masatlioglu (2023) constructively

prove that there exist a unique collection of choice functions C = {c1, c2, . . . , cK} satisfying

a progressive property with respect to ▷,21 and a probability distribution µ over C such

that π(x, S) =
∑

i: ci(S)=x

µ(ci) for all x ∈ S and S ∈ X . We briefly describe the construction

here for convenience. Define

K = {π(L⊵(x), S)|S ⊆ X and x ∈ S}, where L⊵(x) = {y : x⊵ y}

This defines a collection of all cumulative probabilities on lower-contour sets derived from the

probabilistic choice. Clearly, K is a finite subset of [0, 1]. Next, we sort the strictly positive

elements in K from the lowest to the highest, that is, 0 < k1 < k2 < .. < km = 1. Define

the following lower-contour set operator L+
▷(x, S), which yields the set of all alternatives

that are ▷-worse than x and chosen with a strictly positive probability in S. That is,

L+
▷(x, S) = {y ∈ S|π(y, S) > 0 and x▷ y}

Also, define L+
⊵(x, S) = L+

▷(x, S) ∪ {x}. For any choice set S, follow the steps below.

STEP 1. Define c1(S) as the ▷-worst alternative in S with a strictly positive probability of

being chosen and µ(c1) = k1. That is, π(c1(S), S) > 0 and L+
▷(c1(S), S) = ∅.

STEP i with 2 ≤ i ≤ m. Define the ith choice function as follows.

ci(S) =

ci−1(S) if π(L⊵(ci−1(S)), S) > ki−1,

x if π(L⊵(ci−1(S)), S) = ki−1,
and µ(ci) = ki − ki−1

where x ∈ S satisfies π(x, S) > 0 and L+
▷(x, S) \ L+

▷(ci−1(S), S) = ci−1(S). That is, if

ci(S) ̸= ci−1(S) then ci(S) is the next alternative in S that is chosen with a strictly positive

probability (ci(S) is the successor of ci−1(S)). Filiz-Ozbay and Masatlioglu (2023) call

C = {c1, c2, . . . , cm} a PRC(▷) representation of π. We first prove the following Lemma.

21ci is a choice function if ci : X → X and ci(S) ∈ S for all S ∈ X . The collection of choice functions
C = {c1, c2, . . . , cK} satisfies the progressive property with respect to ▷ if ci(S) ⊵ cj(S) for all S ∈ X and
i ≥ j. Here, the linear order ▷ can be arbitrary.
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Lemma 1. Let {c1, c2, . . . , cm} be the PRC(▷) representation of π and µ the associated

probability measure. Fix a choice set S and a type i ≥ 1. Consider x ∈ S such that

x▷ ci(S). If the two following conditions are satisfied

(I1) : π(ci(S), S) ≤ π(ci(S), S \ x) and;

(I2) : π(t, S) = π(t, S \ x) for all t ∈ S such that ci(S)▷ t,

then cj(S) = cj(S \ x) for all j = 1, 2, . . . , i.

Proof. Proof by induction. First, we show that c1(S) = c1(S \ x). Proof by contradiction.

Suppose c1(S) ̸= c1(S \ x). Observe that 0 < π(c1(S), S) because of the construction of

choice functions. Also, π(c1(S), S) ≤ π(c1(S), S\x) because of the two conditions on π (note

that ci(S)⊵c1(S) by construction). Hence, 0 < π(c1(S), S\x). By definition, c1(S\x) is the
▷-worst alternative among those with a strictly positive probability of being chosen when

the menu is S \x. The inequality 0 < π(c1(S), S \x) then implies c1(S)▷ c1(S \x) (because
c1(S) ̸= c1(S \x)). With c1(S)▷c1(S \x), it is the case that ci(S)⊵c1(S)▷c1(S \x). Hence,
condition I2 is applicable and we have π(c1(S \ x), S) = π(c1(S \ x), S \ x). By definition of

c1(S \ x), π(c1(S \ x), S \ x) > 0. This implies π(c1(S \ x), S) > 0. By definition, c1(S \ x)
is the ▷-worst alternative among those with a strictly positive probability of being chosen

when the menu is S. The inequality 0 < π(c1(S \ x), S) then implies c1(S \ x)▷ c1(S). So,

we have c1(S \x)▷c1(S)▷c1(S \x), which is a contradiction. Hence, the initial assumption

is wrong and c1(S) = c1(S \ x).

Second, suppose that ct(S) = ct(S \ x) for all t = 1, 2, .., . . . , j − 1. We will show that

cj(S) = cj(S \ x) (here j ≤ i). If cj(S) = cj−1(S) and cj(S \ x) = cj−1(S \ x) then we are

done. Therefore, it is sufficient to consider the following cases.

Case 1: cj(S) ̸= cj−1(S) and cj(S \ x) = cj−1(S \ x). By the construction of choice func-

tions, cj(S) ̸= cj−1(S) implies cj(S)▷cj−1(S). By transitivity, ci(S)⊵cj(S) (because i ≥ j)

and cj(S)▷cj−1(S) = cj−1(S\x) imply ci(S)▷cj−1(S\x). Hence, condition I2 is applicable

and it is the case that π(cj−1(S \ x), S) = π(cj−1(S \ x), S \ x). However, it cannot happen
as

π(cj−1(S \ x), S \ x) ≥ µ(cj) +

j−1∑
k=1

k: ck(S\x)=cj−1(S\x)

µ(ck) = µ(cj) +

j−1∑
k=1

k: ck(S)=cj−1(S\x)

µ(ck)

= µ(cj) + π(cj−1(S \ x), S)

> π(cj−1(S \ x), S)

The inequality in the first line comes from the fact that cj−1(S\x) = cj(S\x). The equation
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in the first line results from our assumption that ck(S) = ck(S \x) for all k = 1, 2, . . . , j−1.

The equation in the second line holds because ̸ ∃k ≥ j such that ck(S) = cj−1(S \ x) as

cj(S)▷ cj−1(S \ x). The last inequality uses µ(cj) > 0.

Case 2: cj(S) = cj−1(S) and cj(S \ x) ̸= cj−1(S \ x). By the construction of choice func-

tions, cj(S \ x) ̸= cj−1(S \ x) implies cj(S \ x) ▷ cj−1(S \ x). Since i ≥ j, we have

ci(S) ⊵ cj(S) = cj−1(S) = cj−1(S \ x). By conditions I1 and I2, it is the case that

π(cj−1(S \ x), S) ≤ π(cj−1(S \ x), S \ x). However, it cannot happen as

π(cj−1(S \ x), S) ≥ µ(cj) +

j−1∑
k=1

k: ck(S)=cj−1(S\x)

µ(ck) = µ(cj) +

j−1∑
k=1

k: ck(S\x)=cj−1(S\x)

µ(ck)

= µ(cj) + π(cj−1(S \ x), S \ x)

> π(cj−1(S \ x), S \ x)

The inequality in the first line comes from the fact that cj−1(S \ x) = cj−1(S) = cj(S).

The equation in the first line results from our assumption that ck(S) = ck(S \ x) for all

k = 1, 2, . . . , j − 1. The equation in the second line holds because ̸ ∃k ≥ j such that

ck(S \ x) = cj−1(S \ x) as cj(S \ x)▷ cj−1(S \ x). The last inequality uses µ(cj) > 0.

Case 3: cj(S) ̸= cj−1(S) and cj(S \ x) ̸= cj−1(S \ x). By construction of the choice func-

tions, cj(S) ▷ cj−1(S) and cj(S \ x) ▷ cj−1(S \ x). Proof by construction. Suppose

cj(S) ̸= cj(S \ x).

• Suppose cj(S)▷ cj(S \ x). By transitivity, ci(S)⊵ cj(S) (because j ≥ i) and cj(S)▷

cj(S \ x) imply ci(S)▷ cj(S \ x). Hence, condition I2 is applicable and thus π(cj(S \
x), S) = π(cj(S \ x), S \ x) > 0. The last inequality comes from the definition of

cj(S \ x). Therefore,

cj(S)▷ cj(S \ x)▷ cj−1(S \ x) = cj−1(S) and π(cj(S \ x), S) > 0

This is a contradiction to the definition of cj(S) because there is another alternative,

cj(S \ x), that is chosen with a strictly positive probability in S but ranked between

cj(S) and cj−1(S).

• Suppose cj(S \ x)▷ cj(S). Note that ci(S)⊵ cj(S) so conditions I1 and I2 imply that

π(cj(S), S \ x) ≥ π(cj(S), S) > 0, where the last inequality comes from the definition

of cj(S). Therefore,

cj(S \ x)▷ cj(S)▷ cj−1(S) = cj−1(S \ x) and π(cj(S), S \ x) > 0
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This is a contradiction to the definition of cj(S\x) because there is another alternative,
cj(S), that is chosen with a strictly positive probability in S \ x but ranked between

cj(S \ x) and cj−1(S \ x).

Hence, the initial assumption is wrong and it is the case that cj(S) = cj(S \ x). This

completes our proof of the Lemma.

Next, we prove the Theorem. Suppose {c1, c2, . . . , cm} is the collection of choice func-

tions from the PRC(≻) representation of π. Suppose the probability distribution over

the choice collection is {µ1, µ2, . . . , µm}. This implies ci(S) ≿ cj(S) when i ≥ j and

π(x, S) =
∑

i: ci(S)=x

µi for all x ∈ S and S ∈ X . Define consideration sets as follows

Γi(S) = {x ∈ S : ci(S) ≿ x} for all i and S ∈ X

and the probability measure is µ(Γi) = µi. First, Γi(S) ⊇ Γj(S) when i ≥ j because

ci(S) ≿ cj(S). Hence, the collection of consideration sets {Γ1,Γ2, . . . ,Γm} is growing. Also,

ci(S) = max(Γi(S),≻) by construction. Therefore,

π(x, S) =
∑

i: ci(S)=x

µi =
∑

i:max(Γi(S),≻)=x

µ(Γi) ∀x ∈ S and S ∈ X

The last step is to show that Γi is an attention filter. Take an arbitrary x ∈ S but x ̸∈ Γi(S).

It follows x ≻ ci(S) by the construction of Γi. We will show that Γi(S) = Γi(S \ x).

The idea is to use Lemma 1 for preference ≻. Applying w-MON for x ≻ ci(S), we have

π(ci(S), S) ≤ π(ci(S), S \ x) so condition I1 in Lemma 1 is satisfied. Consider an arbitrary

z such that ci(S) ≻ z. Applying Independence for x ≻ ci(S) ≻ z and π(ci(S), S) > 0, we

have π(z, S) = π(z, S \ x) so condition I2 in Lemma 1 is satisfied. Therefore, Lemma 1 is

applicable and it is the case that cj(S) = cj(S \ x) for all j = 1, 2, . . . , i. By construction,

Γi(S) = Γi(S \ x) and it follows that Γi is an attention filter. This completes our proof of

the Theorem. ■

Proof of Theorem 2. First, we show that Γi(S) = {x : x ∈ S and max(Γi(S),≻) ≿ x}
for all i ∈ {1, 2, ..,m} and S ∈ X . Proof by contradiction. Suppose there exists (x, i, S)

such that x ∈ S and max(Γi(S),≻) ≿ x but x ̸∈ Γi(S). Clearly, x ̸= max(Γi(S),≻)

so max(Γi(S),≻) ≻ x. Because the collection of attention filters is growing, x ̸∈ Γi(S)

implies that x ̸∈ Γk(S) for all k = 1, 2, . . . , i − 1. Therefore, x ̸= max(Γk(S),≻) for

all k = 1, 2, . . . , i − 1. Note that max(Γk(S),≻) ≿ max(Γi(S),≻) for all k ≥ i because

of the growing attention property. By transitivity, max(Γk(S),≻) ≿ max(Γi(S),≻) and
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max(Γi(S),≻) ≻ x imply max(Γk(S),≻) ≻ x for all k ≥ i. Hence, x ̸= max(Γk(S),≻) for

all k = i, i + 1, . . . ,m. It follows that x ̸= max(Γk(S),≻) for all k. Hence, x is not chosen

at S, which contradicts the assumption that π has full support.

Second, suppose (Γ, µ) represents π with Γ = {Γ1,Γ2, . . . ,Γm} containing distinct at-

tention filters. Suppose ∃i ̸= j such that max(Γi(S),≻) = max(Γj(S),≻) for all S ∈ X . It

follows from the first part of the proof that Γi(S) = Γj(S) for all S ∈ X . Hence, Γi = Γj ,

which is a contradiction. Therefore, for all i ̸= j, there exists S ∈ X such that max(Γi(S),≻
) ̸= max(Γj(S),≻). Define the following choice functions: ci(S) = max(Γi(S),≻) for all i

and S ∈ X . Then ci(S) ≿ cj(S) for all S and i ≥ j because of the expansion property.

Also, ci(S) ̸= cj(S) for some S ∈ X . Additionally,

π(x, S) =
∑

i:max(Γi(S),≻)

µi =
∑

i:x=ci(S)

µi for all x ∈ S and S ∈ X

Therefore, {c1, c2, . . . , cm} is a PRC(≻) representation of π. Because the PRC(≻) represen-

tation is uniquely identified following Filiz-Ozbay and Masatlioglu (2023) (we described the

construction in the proof of Theorem 1), it follows that (Γ, µ) is unique and max(Γi(S),≻)

is identified. This completes our proof. ■

Proof of Corollary 1. Suppose π = (Γ, µ,≻) and π′ = (Γ′, µ′,≻′). Both RCFs are pos-

itive, so it follows from the proof of Theorem 2 that Γi(S) = {x ∈ S : max(Γi(S),≻
) ≿ x} and Γ′

j(S) = {y ∈ S : max(Γ′
j(S),≻′) ≿′ y}. Enumerate elements in S as

a|S| ≻ a|S|−1 ≻ · · · ≻ a1 and b|S| ≻′ b|S|−1 ≻′ · · · ≻′ b1. Then, π(U≿(am, S), S) =∑
i:max(Γi(S),≻)≿am

µi =
∑

i: |Γi(S)|≥m

µi, where the second equation comes from the fact that

Γi(S) = {x ∈ S : max(Γi(S),≻) ≿ x}. Similarly,

π′(U≿′(bm, S), S) =
∑

j:max(Γ′
j(S),≻′)≿′bm

µ′
j =

∑
j: |Γ′

j(S)|≥m

µ′
j

By definition, π FOSD π′ if we have π(U≿(am, S), S) ≥ π′(U≿′(bm, S), S) for all S ∈ X
and m ∈ {1, 2, . . . , |S|}. This inequality is equivalent to

∑
i: |Γi(S)|≥m

µi ≥
∑

j: |Γ′
j(S)|≥m

µ′
j for all

S ∈ X and m ∈ {1, 2, . . . , |S|}. Equivalently, π is more attentive than π′. This completes

our proof. ■

Proof of Corollary 2. Suppose π = (Γ, µ,≻) and π′ = (Γ′, µ′,≻′). Enumerate elements

in S as a|S| ≻ a|S|−1 ≻ · · · ≻ a1 and and b|S| ≻′ b|S|−1 ≻′ · · · ≻′ b1. As in the proof of

Corollary 1, we have π(U≿(am, S), S) =
∑

i:max(Γi(S),≻)≿am

µi =
∑

i: |Γi(S)|≥m

µi because π has
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full support. Also, π′(U≿′(bm, S), S) =
∑

j:max(Γ′
j(S),≻′)≿′bm

µ′
j . Because π FOSD π′, we have

π(U≿(am, S), S) ≥ π′(U≿′(bm, S), S) for all S ∈ X and m ∈ {1, 2, . . . , |S|}. Equivalently,

∑
i: |Γi(S)|≥m

µi ≥
∑

j:max(Γ′
j(S),≻′)≿′bm

µ′
j ,∀m ∈ {1, 2, . . . , |S|} and S ∈ X

We will prove that
∑

j:max(Γ′
j(S),≻′)≿′bm

µ′
j ≥

∑
j: |Γ′

j(S)|≥m

µj so it follows that π is more attentive

than π′. It is sufficient to show {j : max(Γ′
j(S),≻′) ≿′ bm} ⊇ {j : |Γ′

j(S)| ≥ m}. Take

an arbitrary t ∈ {j : |Γ′
j(S)| ≥ m}. It follows |Γ′

t(S)| ≥ m. Hence, it must be the case

that max(Γ′
t(S),≻′) ≿′ bm. This is because otherwise we must have |Γ′

t(S)| ≤ m − 1 since

bm−1 ≿′ max(Γ′
t(S),≻′), which is a contradiction. Observe that max(Γ′

t(S),≻′) ≿′ bm

implies t ∈ {j : max(Γ′
j(S),≻′) ≿′ bm}, which is what we need. This completes our proof.

■

Proof of Theorem 3. Let {c1, c2, . . . , cm} be the PRC(▷) representation of π. Suppose

{µ1, µ2, . . . , µm} is the associated probability distribution. Enumerate all elements in S as

x|S| ▷ x|S|−1 ▷ · · ·▷ x1 with |S| being the cardinality of S. Define the consideration sets as

follows

Γi(S) = {x1, x2, . . . , xi∗}, where i∗ is the largest integer s.t. ci(S) ≿ xt ∀t ≤ i∗

Define the probability distribution over {Γ1,Γ2, . . . ,Γm} as µ(Γi) = µi. Note that Γi(S)

has the list-based structure with respect to ▷ for all i and S ∈ X . We show that Γi(S)

is well defined by proving that ci(S) ≿ x1. If ci(S) = x1 then we are done. If ci(S) ̸= x1

then ci(S) ▷ x1 because ci(S) ∈ S. Because π(ci(S), S) > 0, by IDE axiom, we have

ci(S) ≻ x1. Hence, ci(S) ≿ x1 in all situations and Γi(S) is well defined. Observe that

it immediately follows from the definition of Γi(S) that ci(S) = max(Γi(S),≻). Hence

π(x, S) =
∑

i:x=ci(S)

µi =
∑

i:x=max(Γi(S),≻)

µi. We show that the collection of consideration

sets {Γ1,Γ2, . . . ,Γm} is growing. It is sufficient to show Γi(S) ⊆ Γj(S) when i ≤ j. By

construction, this set relationship is equivalent to i∗ ≤ j∗. Proof by contradiction. Suppose

i∗ > j∗. This implies xj∗+1 ∈ Γi(S). By definition of j∗, it is the case that xj∗+1 ≻ cj(S).

Hence, ci(S) = max(Γi(S),≻) ≿ xj∗+1 ≻ cj(S) ≿ ci(S), which is a contradiction. Here,

cj(S) ≿ ci(S) comes from the IDE axiom as follows. Note that cj(S) ⊵ ci(S) since j ≥ i.

Also, both cj(S) and ci(S) are chosen with strict probabilities in S. Hence, it follows from

the IDE axiom that cj(S)⊵ ci(S) implies cj(S) ≿ ci(S).
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The last step is to show that Γi is an attention filter. Take arbitrary y ∈ S but y ̸∈ Γi(S).

We will show that Γi(S) = Γi(S\y). The idea is to use Lemma 1 for the linear order ▷. Note

that y ∈ S but y ̸∈ Γi(S) imply y⊵ xi∗+1 with xi∗+1 ∈ S. Applying ▷-wMON for y⊵ xi∗+1

and xi∗+1 ≻ ci(S), we have π(ci(S), S) ≤ π(ci(S), S \ y) so condition I1 in Lemma 1 is

satisfied. Applying ▷-Independence for y⊵xi∗+1 and xi∗+1 ≻ ci(S) and π(ci(S), S) > 0, we

have π(t, S) = π(t, S \y) for all t such that ci(S)▷ t so condition I2 in Lemma 1 is satisfied.

Hence, Lemma 1 is applicable and it follows that cj(S) = cj(S \ y) for all j = 1, 2, . . . , i. By

construction, Γi(S) = Γi(S \ y). This completes our proof. ■

Proof of Observation 1. Proof by contradiction. Suppose ∃i such that w(xai+1
) > w(xai

)

in the optimal list L. Consider another list L′ obtained from L by switching the positions of

xai
and xai+1

while keeping the positions of all other items unchanged. Then, max(Γj(L),≻
) = max(Γj(L

′),≻) for all j ≥ ai+1 and j ≤ ai − 1. Also,

max(Γj(L),≻) = xai
and max(Γj(L

′),≻) = xai+1
, ∀j such that ai ≤ j ≤ ai+1 − 1

Since w(xai+1
) > w(xai

), the designer’s utility is strictly higher under list L′ (contradiction).

Hence, the initial assumption is wrong and we have w(xai+1
) < w(xai

).

Proof of Observation 2. Proof by contradiction. Suppose there exists an optimal list L

but x1 ̸= x∗. It follows from Observation 1 that x∗ is chosen with a zero probability in L

(because w(x∗) > w(x1) by definition of x∗). Consider the following cases.

Case 1: x∗Lxak
, i.e., x∗ appears after xak

in the list. Consider a list L′ obtained from

L by switching x∗ and the item in the (ak +1)th position in list L (L′ can be identical to L

if the (ak + 1)th position in L is x∗). The designer’s utilities under L and L′ are the same

because max(Γi(L),≻) = max(Γi(L
′),≻) and π(x, L) = π(x, L′) for all i = 1, 2, . . . , |L|

and x ∈ L. Hence, L′ is also optimal. Now, consider a list L′′ obtained from L′ by

switching x∗ and xak
in list L′. Then, max(Γi(L

′),≻) = max(Γi(L
′′),≻) for all i ̸= ak. Also,

max(Γak
(L′),≻) = xak

and max(Γak
(L′′),≻) ∈ {x∗, xak−1

}. Note that w(x∗) > w(xak
) by

definition of x∗. Additionally, it follows from Observation 1 that w(xak−1
) > w(xak

). Hence,

by the monotonicity of the objective function, the designer’s utility under list L′′ is strictly

higher, implying that list L′ cannot be optimal (contradiction).

Case 2: xai+1
Lx∗Lxai

, for some i ∈ {1, 2, . . . , k}, i.e., x∗ appears after xai
but before

xai+1
in the list. Again, consider two lists L′ and L′′ as in case 1. List L′ is obtained from

L by switching the positions of x∗ and (ai + 1)th. By a similar logic as in case 1, list L′ is

also optimal. List L′′ is obtained from L′ by switching the positions of x∗ and xai
. Again,

being similar to case 1, list L′′ gives the designer a higher utility (contradiction).
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Proof of Observation 3. Proof by contradiction. Suppose xai
≻ y but y appears after

xai+1
in the optimal list L. Consider the following cases.

Case 1: y appears right after xaj
in the list for some j such that k ≥ j ≥ i+1. Consider

a list L′ obtained from list L by switching the positions of xaj
and y. Then, max(Γt(L),≻

) = max(Γt(L
′),≻) for all t ̸= aj . Also, max(Γaj

(L),≻) = xaj
and max(Γaj

(L′),≻) = xaj−1

because of the transitivity of preferences: xai
≻ y and xaj−1

≿ xai
(because j−1 ≥ i) imply

xaj−1
≻ y. Since w(xaj−1

) > w(xaj
) following Observation 1, the designer’s utility is strictly

higher under list L′ (contradiction). It follows that y cannot appear right after xaj
in the

list for j such that k ≥ j ≥ i+ 1.

Case 2: y appears after xak
in list L. By case 1, xak+1 ̸= y. Consider a list L′ obtained

from list L by switching the positions of y and xak+1. List L′ is also optimal because

max(Γt(L),≻) = max(Γt(L
′),≻) and π(x, L) = π(x, L′) for all t = 1, 2, . . . , |L| and x ∈ L.

However, y appears right after xak
in list L′, which cannot happen following case 1.

Case 3: ∃t ≥ 1 such that xai+t+1
LyLxai+t

, i.e., y appears after xai+t
but before xai+t+1

,

with i+ t+ 1 ≤ k. First, y cannot appear right after xai+t
because of the result in case 1.

Second, consider a list L′ obtained from list L by switching the positions of y and xai+t+1.

By the same logic as in case 2, list L′ is also optimal. However, y appears right after xai+t

in list L′, which cannot happen following case 1. This completes our proof. ■

Proof of Observation 4. Proof by induction. Note that x1 = xa1
= max

x∈L
w(x) fol-

lowing Observation 2. First, we show that xa2
= argmax

x:x≻x1

w(x). Suppose not and xa2
̸=

argmax
x:x≻x1

w(x). Let argmax
x:x≻x1

w(x) = x′. Since w(x′) > w(xa2
), it follows from Observation 1

that x′ is chosen with zero probability under optimal list L. Consider the following cases.

Case 1: x′Lxak
, i.e., x′ appears after xak

in the list. Following the same logic as in

case 1 in the proof of Observation 2 (by replacing x∗ in the proof of Observation 2 by x′),

we can show that there is a contradiction.

Case 2: xai+1
Lx′Lxai

for some i ∈ {2, . . . , k}, i.e., x′ appears after xai
but before xai+1

in the list. Again, following the same logic as in case 2 in the proof of Observation 2 (by

replacing x∗ in the proof of Observation 2 by x′), we can reach a contradiction.

Second, suppose xaj
= argmax

x:x≻xaj−1

w(x) holds for j = 2, 3, . . . , t, where t ≤ k − 1. We

will show that xat+1
= argmax

x:x≻xat

w(x). Proof by contradiction. Suppose not and xat+1
̸=

argmax
x:x≻xat

w(x). Let argmax
x:x≻xat

w(x) = x′′. Following Observation 2, x′′ is not chosen at list L.

Follow the same logic as in cases 1 and 2, we can show that there is a contradiction. This

completes our proof. ■
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Appendix B Number of Possible Preferences
In order to establish the existence of a maximum of two possible preferences representing

the data, we will need two simple properties: strictness and non-additivity. As we will

illustrate later, these two conditions are typically satisfied in empirical settings.

First, the strictness condition requires that the RCF must have full support, and the

frequencies of selecting the same alternative must vary in different binary menus.

Definition B.1 (Strictness). RCF π is strict if π(x, S) > 0 for all S ∋ x and π(x, {x, y}) ̸=
π(x, {x, z}) for all x, y, z pairwise distinct.

The strictness assumption cannot be rejected by any finite data set. Additionally, it is

a weakening of a much more restrictive condition usually assumed for estimation purposes:

π(x, S) ̸= π(x, S′) > 0 for any S ∋ x and S′ ∋ x; in our strictness condition, we only require

that π(x, S) ̸= π(x, S′) when S and S′ are binary menus.

Meanwhile, the non-additivity condition states that for arbitrary x, y, z, the choice fre-

quency of x in {x, z} cannot be decomposed into the choice frequency of x in {x, y} plus

the choice frequency of y in {y, z}.

Definition B.2 (Non-Additivity). RCF π satisfies non-additivity if for arbitrary x, y, z

pairwise distinct: π(x, {x, z}) ̸= π(x, {x, y}) + π(y, {y, z}).

The violation of non-additivity can result in three endogenous GAM representations

even when |X| = 3. While these cases are very rare and typically not encountered in

empirical settings, it would be helpful to understand when our identification can yield more

than two representations. To illustrate, consider the following example.

Example B.1. Let X = {x, y, z} and RCF πa,b be given by

πa,b {x, y, z} {x, y} {x, z} {y, z}
x a a a+ b −
y b 1− a − b

z 1− a− b − 1− a− b 1− b

with 0 < a, b and a+b < 1. There is no regularity violation in the choice data and πa,b satis-

fies strictness. Additionally, πa,b violates non-additivity as πa,b(x, {x, z}) = πa,b(x, {x, y})+
πa,b(y, {y, z}). πa,b has three GAM representations with the following preferences: y ≻1

x ≻1 z, x ≻2 z ≻2 y, and z ≻3 y ≻3 x.
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Non-additivity effectively excludes cases as in Example B.1 above. Additionally, non-

additivity also implies that for given binary choices among arbitrary x, y, z, there exist

at least two random utility models when the grand set is {x, y, z}. To understand this

implication, consider the choice data in Example B.1 above that violates non-additivity.

Given binary choices in {x, y}, {y, z}, and {x, z}, if an arbitrary RCF π′ is a RUM, choice

probabilities in {x, y, z} under π′ must satisfy

π′(x, {x, y, z}) ≤ a;π′(y, {x, y, z}) ≤ b; and π′(z, {x, y, z}) ≤ 1− a− b,

It follows that 1 = π′(x, {x, y, z}) + π′(y, {x, y, z}) + π′(z, {x, y, z}) ≤ a+ b+ 1− a− b = 1.

Hence, the three inequalities above must hold with equality, and it implies that there is a

unique RUM given binary choices. That unique RUM is actually given in Example B.1.

The violation of non-additivity, as the one in Example B.1, is relatively rare. Note that

under the full support of the RCF, non-additivity constitutes a generalization of a well-

known notion of choice consistency across menus called moderate stochastic transitivity

(MST) (Chipman, 1958; Georgescu-Roegen, 1958):

min{π(x, {x, y}), π(y, {y, z})} ≥ 1

2
⇒ π(x, {x, z}) ≥ min{π(x, {x, y}), π(y, {y, z})}

MST is one of the common stochastic transitivity properties studied in the literature.22

Empirically, there is robust evidence suggesting that individual choices satisfy MST. In

reviewing experimental data, Mellers et al. (1992, p. 348) note that “moderate stochastic

transitivity are often satisfied, although a few exceptions have been noted.” Some of the

earliest supporting evidence for MST includes perceptual choice data in Tversky and Russo

(1969) and gamble choice in Lindman (1971). Recent empirical evidence shows that MST

is also satisfied in different domains such as choice among lotteries (Soltani et al., 2012)

and even in animal studies (Lea and Ryan, 2015; Rivalan et al., 2017). Remark B.1 below

states that non-additivity generalizes MST as any positive RCF satisfying the latter also

satisfies the former. Hence, whenever the MST is satisfied, then so is non-additivity.

Remark B.1. If a positive RCF π satisfies MST then π satisfies non-additivity.

Proof. Proof by contradiction. Suppose π is positive and satisfies MST but violates non-

additivity. Without loss of generality, suppose π(x, {x, z}) = π(x, {x, y})+π(y, {y, z}). Let
22The two other common stochastic transitivity properties are weak stochastic transitivity (WST):

min{π(x, {x, y}), π(y, {y, z})} ≥ 1/2 ⇒ π(x, {x, z}) ≥ 1/2, and strong stochastic transitivity (SST):
min{π(x, {x, y}), π(y, {y, z})} ≥ 1/2 ⇒ π(x, {x, z}) ≥ max{π(x, {x, y}), π(y, {y, z})}.
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the binary choices in π be given by

π {x, y} {x, z} {y, z}
x a a+ b −
y 1− a − b

z − 1− a− b 1− b

where a, b > 0 and a+ b < 1 because π has full support. We show that π violates MST.

Case 1: Suppose π(x, {x, y}) = a ≥ 1/2. It follows π(x, {x, z}) = a + b > a ≥ 1/2

and π(z, {y, z}) = 1− b > a ≥ 1/2. Hence, min{π(x, {x, z}), π(z, {y, z})} ≥ 1/2. The MST

implies that π(x, {x, y}) ≥ min{π(x, {x, z}), π(z, {y, z})}, or equivalently a ≥ min{a+b, 1−
b}. This is a contradiction since 0 < a < a+ b < 1.

Case 2: Suppose π(x, {x, y}) = a ≤ 1/2. It follows π(y, {x, y}) ≥ 1/2.

• If π(x, {x, z}) ≥ 1/2 then min{π(y, {x, y}), π(x, {x, z})} ≥ 1/2. The MST implies that

π(y, {y, z}) ≥ min{π(y, {x, y}), π(x, {x, z})}, or equivalently b ≥ min{1 − a, a + b}.
This is a contradiction since 0 < a < a+ b < 1.

• If π(x, {x, z}) ≤ 1/2 then π(z, {x, z}) ≥ 1/2. It follows π(z, {y, z}) ≥ 1/2 (because

1 − b > 1 − a − b). We have min{π(z, {y, z}), π(y, {x, y})} ≥ 1/2. The MST implies

π(z, {x, z}) ≥ min{π(z, {y, z}), π(y, {x, y})}, or equivalently 1−a−b ≥ min{1−b, 1−
a}. This is a contradiction since 0 < a, b. This completes our proof.23 ■

Once strictness and non-additivity properties are satisfied, Theorem B.1 below claims

that there are at most two endogenous GAM representations for X of any size.

Theorem B.1 (Number of endogenous GAM representations). Suppose a strict RCF π

has an endogenous GAM representation and satisfies non-additivity. There are at most two

representations.

Proof. We prove Theorem B.1 by induction based on the number of alternatives in the

grand set X. Firstly, we use non-additivity and strictness of RCF to show that for arbitrary

23It can be further shown that there are some RCFs satisfying non-additivity but do not satisfy MST, so
MST is strictly more restrictive. For example, consider the following RCF with full support

π {x, y, z} {x, y} {x, z} {y, z}
x 5/12 6/12 8/12 −
y 3/12 6/12 − 2/5
z 4/12 − 4/12 3/5

This RCF has at least one GAM representation with y ≻ x ≻ z and satisfy non-additivity. However, there
is a violation of MST because min{π(y, {x, y}), π(x, {x, z})} ≥ 1/2 but π(y, {y, z}) < 1/2.
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x, y, z pairwise distinct, there are at most two preference orders over x, y, z. Subsequently,

we generalize this result to X of any size. Before we proceed with the proof, we prove the

following Lemmata.

Lemma B.1. Suppose a strict RCF π has an endogenous GAM representation. For arbi-

trary x, y, and z, if there are two preferences over x, y, z, then no alternative (among x, y, z)

is ranked first or last in both preferences.

Proof. Proof by contradiction. Suppose there are two different preferences ≻1 and ≻2

representing π and ≻1,≻2 differ over x, y, z for some x, y, z. Suppose one alternative among

x, y, z is ranked first or last in both preferences.

Case 1: One alternative is ranked first in the two preferences. Without loss of generality,

suppose the alternative is z and suppose z ≻1 x ≻1 y and z ≻2 y ≻2 x. Applying Indepen-

dence for z ≻1 x ≻1 y, we have π(y, {x, y, z}) = π(y, {x, y}). Applying Independence for

z ≻2 y ≻2 x, we have π(x, {x, y, z}) = π(x, {x, y}). Hence,

1 = π(x, {x, y}) + π(y, {x, y}) = π(x, {x, y, z}) + π(y, {x, y, z})

Therefore, π(z, {x, y, z}) = 0 (contradiction because π is a strict probability choice).

Case 2: One alternative is ranked last in the two preferences. Without loss of generality,

suppose the alternative is z and suppose x ≻1 y ≻1 z and y ≻2 x ≻2 z. Applying Indepen-

dence for x ≻1 y ≻1 z, we have π(z, {x, y, z}) = π(z, {y, z}). Applying Independence for

y ≻2 x ≻2 z, we have π(z, {x, y, z}) = π(z, {x, z}). Hence, π(z, {x, y, z}) = π(z, {x, z}) =
π(z, {y, z}). This is also a contradiction to the fact that π is a strict probability choice. ■

Lemma B.2. Suppose a strict RCF π has an endogenous GAM representation and satisfies

non-additivity. There are at most two preference orders over x, y, z for arbitrary x, y, z

pairwise distinct.

Proof. Proof by contradiction. Suppose there are three different preferences ≻1,≻2 and ≻3

representing π and ≻1,≻2 and ≻3 differ over x, y, z for some x, y, z. Since no alternative

is ranked first or last in any two preferences following Lemma B.1, the three preferences

≻1,≻2 and ≻3 must satisfy: x ≻1 y ≻1 z, and y ≻2 z ≻2 x, and z ≻3 x ≻3 y. We have

π(z, {x, y, z}) = π(z, {y, z}) ≤ π(z, {x, z}) (by w-MON and Independence for ≻1)

π(x, {x, y, z}) = π(x, {x, z}) ≤ π(x, {x, y}) (by w-MON and Independence for ≻2)

π(y, {x, y, z}) = π(y, {x, y}) ≤ π(y, {y, z}) (by w-MON and Independence for ≻3)
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Let π(x, {x, y, z}) = a > 0 and π(y, {x, y, z}) = b > 0 with a + b < 1. Choices over x, y, z

are then given by

π {x, y, z} {x, y} {x, z} {y, z}
x a 1− b a −
y b b − a+ b

z 1− a− b − 1− a 1− a− b

However, π violates non-additivity because π(y, {y, z}) = π(y, {x, y})+π(x, {x, z}). Hence,
the initial assumption is wrong, and there are at most two preference orders over x, y, z for

arbitrary x, y, z pairwise distinct. ■

Next, we will prove the Theorem. Proof by induction based on the number of alterna-

tives in X. First, when |X| = 3, there are at most two preferences representing π as shown

in Lemma B.2. Suppose there are at most two preferences representing π when |X| ≤ k−1.

Consider |X| = k ≥ 4. Proof by contradiction. Suppose there are three different preferences

≻1,≻2,≻3 representing π. For any a ∈ X and i ∈ {1, 2, 3}, let ≻a
i be a preference obtained

from ≻i after removing alternative a. Note that for any a ∈ X, at least two among three

≻a
1,≻a

2,≻a
3 have to be identical. Otherwise, at X \ a, there are three different preferences

≻a
1,≻a

2,≻a
3 representing π. This contradicts our initial assumption as |X \ a| = k − 1.

Consider ≻a
i for a ∈ {x, y, z, t} ⊆ X and i ∈ {1, 2, 3}. For each a, by the argument

above, there exists (i, j) with i ̸= j, i, j ∈ {1, 2, 3} such that ≻a
i≡≻a

j . There are at most

three such pairs but four alternatives a. By Dirichlet’s box principle, there exist i ̸= j

and a ̸= b with a, b ∈ {x, y, z, t} such that ≻a
i≡≻a

j and ≻b
i≡≻b

j . Without loss of generality,

suppose that ≻x
1≡≻x

1 and ≻t
1≡≻t

2. Consider the following cases.

Case 1: x and t do not agree at ≻1 and ≻2. Without loss of generality, suppose x ≻1 t

but t ≻2 x.

Case 1.1: Suppose there exists y ∈ X, y ̸= x, t such that y ≻1 t. It follows y ≻x
1 t.

Note that both y and t appear in ≻x
1 and ≻x

2 , and we have ≻x
1≡≻x

2 . Then y ≻x
1 t implies

y ≻x
2 t and hence y ≻2 t. By transitivity, y ≻2 t and t ≻2 x imply y ≻2 x. Also, note that

both y and x appear in ≻t
1 and ≻t

2. It follows that y ≻2 x implies y ≻1 x. Hence, we have

y ≻1 x ≻1 t by transitivity. Now, for two preferences ≻1 and ≻2, we have y ≻1 x ≻1 t

and y ≻2 t ≻2 x so y is ranked first among x, y, t in both preferences. This cannot happen

because of Lemma B.1.

Case 1.2: Suppose there exists y ∈ X, y ̸= x, t such that y ≻2 x. This case is similar to

case 1.1. By the similar logic, we have y ≻1 x ≻1 t and y ≻2 t ≻2 x, so y is still ranked first

among x, y, t in both preferences. This cannot happen because of Lemma B.1.
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Case 1.3: For all y ∈ X, y ̸= x, t, t ≻1 y and x ≻2 y because of results in cases 1.1 and

1.2. By transitivity, we have x ≻1 t ≻1 y and t ≻2 x ≻2 y. Hence, y is ranked last among

x, y, t in both preferences. This cannot happen because of Lemma B.1.

Case 2: x and t agree at ≻1 and ≻2. Without loss of generality, suppose x ≻1 t and x ≻2 t.

Take an arbitrary y ∈ X, y ̸= x, t. Note that t ≻1 y ⇔ t ≻2 y because both t and y appear

in ≻x
1 and ≻x

2 and ≻x
1≡≻x

2 . Similarly, x ≻1 y ⇔ x ≻2 y because both x and y appear in

≻t
1 and ≻t

2 and ≻t
1≡≻t

2. Also, for all y ̸= z and y, z different from x, t, y ≻1 z ⇔ y ≻2 z.

This is because both y and z appear in ≻t
1 and ≻t

2 and ≻t
1≡≻t

2. Therefore, for all a, b ∈ X,

a ̸= b, a ≻1 b if and only if a ≻2 b. It follows that ≻1 and ≻2 are identical, which is a

contradiction. Hence, the initial assumption is wrong and it follows that there are at most

two preferences representing π. This completes our proof. ■
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Appendix C Menu-Dependent Lists
To accommodate real-life situations where the relative positions of two options in a list

can depend on the availability of other items, we introduce context-dependent lists in this

Appendix. Suppose there exists an observed ranked list in each choice set. Mathematically,

there is a linear order ▷S corresponding to the underlying list in S ∈ X . The consideration

sets still have a list-based structure. That is, if x ∈ Γ(S) and x ▷S y then y ∈ Γ(S). A

stochastic choice function π is said to have a GAM{▷S}S∈X (≻) representation if it has a

GAM(≻) representation where consideration sets in the support have the menu-dependent

list-based structure described as above. Note that GAM{▷S}S∈X (≻) generalizes GAM▷(≻)

introduced in section 6. Similar to GAM▷(≻), GAM{▷S}S∈X (≻) is also characterized by

three axioms: ▷S-wMON, ▷S-Independence, and ▷S-IDE. All three axioms are obtained

from their corresponding ones (in GAM▷(≻)) by replacing the menu-independent list order

(▷) with the menu-dependent list orders (▷S) (the only exception is in Axiom C.2 where

we replace the condition z▷ t in Axiom 4 by the condition ‘z▷S t or z▷S\x t’). Hence, the

rationale behind these axioms and the proof of the characterization result in Theorem C.1

closely align with the case when the list order is menu-independent.

Axiom C.1 (▷S-wMON). Suppose x ⊵S y and y ≻ z. Then π(z, S) ≤ π(z, S \ x) for all

S ⊇ {x, y, z}.

Axiom C.2 (▷S-Independence). Suppose x ⊵S y and y ≻ z and π(z, S) > 0. Then

π(t, S) = π(t, S \ x) for all S ⊇ {x, y, z, t} and t such that z ▷S t or z ▷S\x t.

Axiom C.3 (▷S-IDE). x▷S y and y ≻ x imply π(x, S) = 0 for all S ⊇ {x, y}.

Theorem C.1. RCF π has a GAM{▷S}S∈X (≻) representation if and only if π satisfies

▷S-wMON, ▷S-Independence, and ▷S-IDE.

Proof: We first prove the necessity of the axioms.

▷S-wMON: Suppose x ⊵S y and y ≻ z. Note that ▷S-wMON is trivially satisfied when

π(z, S) = 0. When π(z, S) > 0, there exists a type i in the support such that max(Γi(S),≻
) = z. Suppose x ∈ Γi(S). Since x ∈ Γi(S) and x⊵S y, it follows that y ∈ Γi(S). Therefore,

z = max(Γi(S),≻) ≿ y, which is a contradiction. Hence, x ̸∈ Γj(S). It follows Γi(S) =

Γi(S \ x) since Γi is an attention filter. Therefore, max(Γi(S),≻) = max(Γi(S \ x),≻) and

it follows π(z, S) ≤ π(z, S \ x).

▷S-Independence: Suppose x⊵S y and y ≻ z and π(z, S) > 0. There exists a type i in the

support such that max(Γi(S),≻) = z because π(z, S) > 0. Among such i, there exists the

biggest one i∗. Consider an arbitrary j ≤ i∗. Suppose x ∈ Γj(S). It follows y ∈ Γj(S)
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because x⊵S y. Therefore, max(Γj(S),≻) ≿ y. However, this could not happen as y ≻ z =

max(Γi∗(S),≻) ≿ max(Γj(S),≻) ≿ y where max(Γi∗(S),≻) ≿ max(Γj(S),≻) comes from

the fact that Γi∗(S) nests Γj(S) since i
∗ ≥ j. Hence, x ̸∈ Γj(S). It follows Γj(S) = Γj(S \x)

since Γi is an attention filter. Therefore, max(Γj(S),≻) = max(Γj(S \ x),≻) for all j ≤ i∗.

This means π(t, S) = π(t, S \ x) for all t ∈ S such that z ▷S t or z ▷S\x t.

▷S-IDE: Suppose x▷S y and y ≻ x. If x ∈ Γi(S) then y ∈ Γi(S) because x▷S y. However,

since y ≻ x, it follows that max(Γi(S),≻) ̸= x. Hence, π(x, S) = 0.

Now, we prove the sufficiency part. Observe that in the construction of PRC introduced

in Theorem 1, a choice set S is initially fixed and the construction only uses the linear order

operating within S. Hence, the construction of choice functions in Theorem 1 also applies

when the list orders vary in different choice sets. Formally, a collection of choice functions

{c1, c2, . . . , cm} is the PRC({▷S}S∈X ) representation of π with {µ1, µ2, . . . , µm} being the

associated probability distribution if ci(S) ⊵S cj(S) when i ≥ j and π(x, S) =
∑

i: ci(S)=x

µi

for all x ∈ S and S ∈ X . Enumerate all elements in S as x|S|▷S x|S|−1▷S · · ·▷S x1. Define

the consideration sets as follows

Γi(S) = {x1, x2, . . . , xi∗}, where i∗ is the largest integer s.t. ci(S) ≿ xt ∀k ≤ i∗

Define the probability distribution over {Γ1,Γ2, . . . ,Γm} as µ(Γi) = µi. Following the

similar logic in the proof of Theorem 3, Γi(S) is well defined and

π(x, S) =
∑

i:x=ci(S)

µi =
∑

i:x=max(Γi(S),≻)

µi

Also, Γi(S) has the list-based structure with respect to ▷S for all i and S ∈ X . The last

step is to show that Γi is an attention filter. Take arbitrary y ∈ S but y ̸∈ Γi(S). We

will show that Γi(S) = Γi(S \ y). Note that y ∈ S but y ̸∈ Γi(S) imply y ⊵S xi∗+1 with

xi∗+1 ∈ S. Applying ▷S-wMON for y ⊵S xi∗+1 and xi∗+1 ≻ ci(S), we have

π(ci(S), S) ≤ π(ci(S), S \ y) (I1)

For any j ≤ i, applying ▷S-Independence for y⊵Sxi∗+1 and xi∗+1 ≻ cj(S) and π(cj(S), S) >

0, we have

π(t, S) = π(t, S \ y) for all t such that cj(S)▷S t or cj(S)▷S\y t, for all j ≤ i (I2)

where the binary relationship xi∗+1 ≻ cj(S) comes from transitivity as xi∗+1 ≻ ci(S) (by
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definition of ci(S)) and ci(S) ≿ cj(S) (since i ≥ j). The latter follows from ci(S)⊵S cj(S)

(by construction) and an implication from the ▷S-IDE axiom stated below

for all S ⊇ {z, t} and π(z, S) · π(t, S) > 0 : z ⊵S t ⇔ z ≿ t (I3)

We will show that cj(S) = cj(S \ y) for all j = 1, 2, . . . , i by using three conditions

I1, I2, and I3. It then immediately follows that Γi(S) = Γi(S \ y) by construction. Proof by

induction.

STEP 1. We will prove c1(S) = c1(S\y). Proof by contradiction. Suppose c1(S) ̸= c1(S\y).

• First, observe that 0 < π(c1(S), S) because of the construction of choice functions.

Also, π(c1(S), S) ≤ π(c1(S), S \y) because of conditions I1 and I2 (note that ci(S)⊵S

c1(S) by construction). Hence, 0 < π(c1(S), S\y). By definition, c1(S\y) is the ▷S\y-

worst alternative among those with a strictly positive probability of being chosen when

the menu is S \ y. The inequality 0 < π(c1(S), S \ y) then implies c1(S)▷S\y c1(S \ y)
(because c1(S) ̸= c1(S \ y) by assumption).

• Second, because both c1(S) and c1(S\y) are chosen with strictly positive probabilities

in S \ y, c1(S)▷S\y c1(S \ y) implies c1(S) ≻ c1(S \ y) following condition I3.

• Third, applying condition I2 for c1(S) ▷S\y c1(S \ y), we have π(c1(S \ y), S) =

π(c1(S \y), S \y) > 0, where the last inequality comes from the definition of c1(S \y).
By definition, c1(S) is the ▷S-worst alternative among those with a strictly positive

probability of being chosen in S. The inequality π(c1(S \ y), S) > 0 then implies

c1(S \ y)▷S c1(S) (because c1(S) ̸= c1(S \ y) by assumption).

• Fourth, because both c1(S) and c1(S \y) are chosen with strictly positive probabilities

in S, by condition I3, c1(S \ y) ▷S c1(S) implies c1(S \ y) ≻ c1(S). However, this is

a contradiction to the claim in the second bullet. Therefore, the initial assumption is

wrong and c1(S) = c1(S \ y).

STEP 2. Suppose that ct(S) = ct(S \ y) for all t = 1, 2, .., . . . , j − 1. We will show that

cj(S) = cj(S \ y) (here j ≤ i). If cj(S) = cj−1(S) and cj(S \ y) = cj−1(S \ y) then we are

done. Therefore, it is sufficient to consider the following cases.

Case 1: cj(S) ̸= cj−1(S) and cj(S \ y) = cj−1(S \ y). By the construction of choice func-

tions, cj(S) ̸= cj−1(S) implies cj(S) ▷S cj−1(S). By transitivity, ci(S) ⊵S cj(S) (because

i ≥ j) and cj(S)▷S cj−1(S) = cj−1(S \ y) imply ci(S)▷S cj−1(S \ y). Hence, condition I2
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is applicable and it is the case that π(cj−1(S \ y), S) = π(cj−1(S \ y), S \ y). However, it

cannot happen as

π(cj−1(S \ y), S \ y) ≥ µ(cj) +

j−1∑
k=1

k: ck(S\y)=cj−1(S\y)

µ(ck) = µ(cj) +

j−1∑
k=1

k: ck(S)=cj−1(S\y)

µ(ck)

= µ(cj) + π(cj−1(S \ y), S)

> π(cj−1(S \ y), S)

The inequality in the first line comes from the fact that cj(S\y) = cj−1(S\y). The equation
in the first line results from our assumption that ck(S) = ck(S \y) for all k = 1, 2, . . . , j−1.

The equation in the second line holds because ̸ ∃k ≥ j such that ck(S) = cj−1(S \ y) as

cj(S)▷ cj−1(S \ y). The last inequality uses µ(cj) > 0.

Case 2: cj(S) = cj−1(S) and cj(S \ y) ̸= cj−1(S \ y). By the construction of choice func-

tions, cj(S \ y) ̸= cj−1(S \ y) implies cj(S \ y) ▷S\y cj−1(S \ y). Since i ≥ j, we have

ci(S) ⊵S cj(S) = cj−1(S) = cj−1(S \ y). By conditions I1 and I2, it is the case that

π(cj−1(S \ y), S) ≤ π(cj−1(S \ y), S \ y). However, it cannot happen as

π(cj−1(S \ y), S) ≥ µ(cj) +

j−1∑
k=1

k: ck(S)=cj−1(S\y)

µ(ck) = µ(cj) +

j−1∑
k=1

k: ck(S\y)=cj−1(S\y)

µ(ck)

= µ(cj) + π(cj−1(S \ y), S \ y)

> π(cj−1(S \ y), S \ y)

The inequality in the first line comes from the fact that cj−1(S \ y) = cj−1(S) = cj(S).

The equation in the first line results from our assumption that ck(S) = ck(S \ y) for all

k = 1, 2, . . . , j − 1. The equation in the second line holds because ̸ ∃k ≥ j such that

ck(S \ y) = cj−1(S \ y) as cj(S \ y)▷S\y cj−1(S \ y). The last inequality uses µ(cj) > 0.

Case 3: cj(S) ̸= cj−1(S) and cj(S \ y) ̸= cj−1(S \ y). By construction of the choice func-

tions, cj(S) ▷S cj−1(S) and cj(S \ y) ▷S\y cj−1(S \ y). Proof by construction. Suppose

cj(S) ̸= cj(S \y). By condition I2, we have π(cj(S), S \y) ≥ π(cj(S), S) > 0, where the last

inequality comes from the construction of choice functions. Hence, cj(S) is chosen with a

strictly positive probability at S \ y. Consider two following cases:

• Case 3a: cj(S \ y)▷S\y cj(S). As cj(S) is chosen with a strictly positive probability

at S \y, the relationship cj(S \y)▷S\y cj(S) then implies ∃k ≤ j−1 such that cj(S) =

ck(S\y). Using our assumption that ct(S\x) = ct(S) for all t = 1, 2, . . . , j−1, it follows
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that cj(S) = ck(S). However, this cannot happen because cj(S)▷S cj−1(S)⊵S ck(S)

since k ≤ j − 1.

• Case 3b: cj(S)▷S\y cj(S \y). As cj(S) and cj(S \y) are chosen with strictly positive

probabilities at S\y, the relationship cj(S)▷S\y cj(S\y) then implies cj(S) ≻ cj(S\y)
following condition I3. By condition I2, we have π(cj(S\y), S) = π(cj(S\y), S\y) > 0,

where the last inequality comes from the definition of cj(S \ y). Hence, cj(S \ y)

(and also cj(S)) is chosen with a strictly positive probability at S. By condition

I3, cj(S) ≻ cj(S \ y) implies cj(S) ▷S cj(S \ y). This means ∃k ≤ j − 1 such that

cj(S \ y) = ck(S). It follows cj(S \ y) = ck(S \ y) because of our assumption that

ct(S \ y) = ct(S) for all t = 1, 2, . . . , j − 1. However, this cannot happen since

cj(S \y)▷S\y cj−1(S \y)⊵S\y ck(S \y) as k ≤ j−1. Therefore, the initial assumption

is wrong and cj(S) = cj(S \ y). This completes our proof. ■
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